Suppr超能文献

细胞学数据的数值评估。IV. 鉴别与分类。

Numerical evaluation of cytologic data. IV. Discrimination and classification.

作者信息

Bartels P H

出版信息

Anal Quant Cytol. 1980 Mar-Apr;2(1):19-24.

PMID:6990845
Abstract

When observed data have to be assigned to one or another category, classification rules are needed. Linear discriminant functions provide easily computed rules; weighing the discriminat function according to the variances in the data sets helps reduce classification errors. Classification on the basis of a probability density involves nonlinear decision boundaries. Simple numerical examples for bivariate feature vectors are worked out to demonstrate these approaches to classification.

摘要

当需要将观测数据归入某一类别时,就需要分类规则。线性判别函数提供了易于计算的规则;根据数据集中的方差对判别函数进行加权有助于减少分类错误。基于概率密度的分类涉及非线性决策边界。通过给出双变量特征向量的简单数值示例来演示这些分类方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验