Suppr超能文献

脑电图睡眠研究在抑郁症诊断中的应用

EEG studies of sleep in the diagnosis of depression.

作者信息

Feinberg M, Gillin J C, Carroll B J, Greden J F, Zis A P

出版信息

Biol Psychiatry. 1982 Mar;17(3):305-16.

PMID:7082698
Abstract

Psychiatric diagnoses have traditionally been made on the basis of clinical criteria, including current phenomenology and historical information. This traditional procedure presents several problems, including standardization of data gathering and interpretation. Biological criteria have been shown to be useful aids to diagnosis, but the same problems of standardization must be overcome. We present here the derivation of discriminant functions (DFs) using sleep EEG data to separate depressed from normal subjects. More important, we have cross-validated these DFs in a separate group of patients, using them to separate endogenous (ED) from nonendogenous depressed (ND) patients. ADF using the sleep variables REM latency and REM density can make this discrimination with sensitivity = 0.61 and specificity = 0.93. We also present our preliminary findings in support of the earlier conclusion that the sleep of unipolar ED patients is more disturbed than that of bipolar ED patients.

摘要

传统上,精神疾病的诊断是基于临床标准做出的,包括当前的症状表现和病史信息。这种传统方法存在几个问题,包括数据收集和解释的标准化。生物学标准已被证明是诊断的有用辅助手段,但同样必须克服标准化问题。我们在此展示使用睡眠脑电图数据推导判别函数(DFs),以区分抑郁症患者与正常受试者。更重要的是,我们在另一组患者中对这些DFs进行了交叉验证,用它们来区分内源性(ED)和非内源性抑郁症(ND)患者。使用睡眠变量快速眼动(REM)潜伏期和REM密度的判别函数(ADF)进行这种区分时,敏感度为0.61,特异度为0.93。我们还展示了初步研究结果,以支持早期的结论,即单相内源性抑郁症患者的睡眠比双相内源性抑郁症患者的睡眠受到的干扰更大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验