Suppr超能文献

利用死亡率时间序列数据生成假设的发病率分布并预测死亡率趋势。

The use of mortality time series data to produce hypothetical morbidity distributions and projects mortality trends.

作者信息

Manton K G, Stallard E

出版信息

Demography. 1982 May;19(2):223-40.

PMID:7095218
Abstract

It is difficult to obtain direct empirical estimates of chronic disease prevalence in the U.S. population. The available estimates are usually derived from epidemiological studies of selected populations. In this paper we present strategies for estimating morbidity distributions in the national population using auxiliary biomedical evidence and theory to estimate transitions to morbidity states from a cohort mortality time series. We present computational methods which employ these estimates of morbid state transitions to produce life table functions for both primary (morbidity) and secondary (mortality) decrements. These methods are illustrated using data on stomach cancer mortality for nine white male cohorts, aged 30 to 70 in 1950, observed for a 28-year period (1950 to 1977).

摘要

在美国人群中很难获得慢性病患病率的直接经验估计值。现有的估计值通常来自对特定人群的流行病学研究。在本文中,我们提出了一些策略,利用辅助生物医学证据和理论,从队列死亡率时间序列估计向发病状态的转变,从而估计全国人群的发病分布。我们提出了计算方法,这些方法利用对发病状态转变的这些估计来生成主要(发病)和次要(死亡)递减的生命表函数。使用1950年年龄在30至70岁的九个白人男性队列的胃癌死亡率数据对这些方法进行了说明,观察期为28年(1950年至1977年)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验