Heusch G, Yoshimoto N, Müller-Ruchholtz E R
Basic Res Cardiol. 1982 Sep-Oct;77(5):562-73. doi: 10.1007/BF01907947.
In 14 open-chest mongrel dogs, the effects of heart rate on hemodynamic severity of proximal coronary artery stenosis were studied. Stenosis was produced by a circumferential wire snare on left circumflex coronary artery. An intermediate stenosis was defined by reduction of peak reactive hyperemia response to 200% of control flow, a critical stenosis by prevention of any reactive hyperemia flow to a 15-s occlusion. Heart rate was increased stepwise from control to 160 and 200 beats/min by left atrial pacing. In intermediate stenosis, increased pacing rate reduced peripheral coronary pressure distal to the stenosis from 77 +/- 3 to 73 +/- 4 to 65 +/- 3 mm Hg (p less than 0.05) and increased stenosis resistance from 0.30 +/- 0.05 to 0.34 +/- 0.05 to 0.35 +/- 0.05 resistance units (p less than 0.05). In critical stenosis, increased heart rate changed peripheral coronary pressure from 45 +/- 5 to 49 +/- 5 to 48 +/- 5 mm Hg (p less than 0.01) and reduced stenotic resistance from 1.24 +/- 0.19 to 1.08 +/- 0.18 to 1.15 +/- 0.19 resistance units (p less than 0.005). A significant correlation between changes in stenotic resistance and peripheral coronary pressure was obtained (r = -0.71, p less than 0.001). In maximally dilated coronary arteries, a circumferential stenosis decreased circumflex artery flow to 50%. Increased pacing rate up to nearly 200 beats/min raised peripheral coronary pressure distal to the stenosis from 51 +/- 4 to 56 +/- 4 mm Hg (p less than 0.005) and changed stenotic resistance from 0.41 +/- 0.13 to 0.30 +/- 0.06 to 0.33 +/- 0.10 resistance units (p less than 0.05). It is assumed that the changes in peripheral coronary pressure alter the luminal area of the stenosis and hence calculated stenotic resistance. Other possible mechanisms like turbulent streaming, vasomotion or platelet aggregation appear to be of minor importance in the present experimental conditions.
在14只开胸杂种犬中,研究了心率对近端冠状动脉狭窄血流动力学严重程度的影响。通过在左旋支冠状动脉上放置环形钢丝圈套造成狭窄。将反应性充血峰值反应降低至对照血流的200%定义为中度狭窄,将15秒闭塞后无任何反应性充血血流定义为临界狭窄。通过左心房起搏将心率从对照值逐步提高到160次/分和200次/分。在中度狭窄时,起搏频率增加使狭窄远端的外周冠状动脉压力从77±3降至73±4再降至65±3 mmHg(p<0.05),并使狭窄阻力从0.30±0.05增加到0.34±0.05再到0.35±0.05阻力单位(p<0.05)。在临界狭窄时,心率增加使外周冠状动脉压力从45±5变为49±5再变为48±5 mmHg(p<0.01),并使狭窄阻力从1.24±0.19降低到1.08±0.18再到1.15±0.19阻力单位(p<0.005)。狭窄阻力变化与外周冠状动脉压力之间存在显著相关性(r=-0.71,p<0.001)。在冠状动脉最大扩张时,环形狭窄使左旋支动脉血流减少至50%。起搏频率增加至近200次/分,使狭窄远端的外周冠状动脉压力从51±4升高到56±4 mmHg(p<0.005),并使狭窄阻力从0.41±0.13变为0.30±0.06再到0.33±0.10阻力单位(p<0.05)。据推测,外周冠状动脉压力的变化会改变狭窄的管腔面积,从而计算出狭窄阻力。在当前实验条件下,其他可能的机制如湍流、血管运动或血小板聚集似乎不太重要。