Suppr超能文献

一种用于分析米氏机制速率常数的热变方法。

A thermal-variation method for analysing the rate constants of the Michaelis--Menten mechanism.

作者信息

Lin S X, Chou K C, Wong J T

出版信息

Biochem J. 1982 Oct 1;207(1):179-81. doi: 10.1042/bj2070179.

Abstract

By analysing the variations of saturation velocity and Michaelis constant with temperature and invoking the mathematical constraint represented by the Arrhenius equation, it becomes possible to estimate k+2 and indistinguishably k+1 and k-1 for the Michaelis--Menten mechanism of one-substrate enzyme reactions. Distinction between k+1 and k-1 may be obtained through the determination of isotopic rate effects. This procedure thus provides a basis for evaluating all three rate constants of the one-substrate mechanism, and disproves the suggestion that k+1 and k-1 are intrinsically unobtainable from steady-state kinetic measurements.

摘要

通过分析饱和速度和米氏常数随温度的变化,并引入由阿伦尼乌斯方程表示的数学约束,就有可能估计单底物酶反应的米氏-门坦机制中的k+2,以及难以区分的k+1和k-1。k+1和k-1之间的区分可以通过测定同位素速率效应来实现。因此,该方法为评估单底物机制的所有三个速率常数提供了基础,并反驳了认为k+1和k-1本质上无法从稳态动力学测量中获得的观点。

相似文献

8
Fitting enzyme-kinetic data to V/K.将酶动力学数据拟合为V/K。
Anal Biochem. 1983 Jul 15;132(2):457-61. doi: 10.1016/0003-2697(83)90034-9.
10
Michaelis-Menten equation for degradation of insoluble substrate.米氏方程降解不溶性底物。
Math Biosci. 2018 Feb;296:93-97. doi: 10.1016/j.mbs.2017.11.011. Epub 2018 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验