Suppr超能文献

体外大脑中需氧糖酵解的调控

Control of aerobic glycolysis in the brain in vitro.

作者信息

Benjamin A M, Verjee Z H

出版信息

Neurochem Res. 1980 Sep;5(9):921-34. doi: 10.1007/BF00966133.

Abstract

Protoveratrine-(5 microM) stimulated aerobic glycolysis of incubated rat brain cortex slices that accompanies the enhanced neuronal influx of Na+ is blocked by tetrodotoxin (3 microM) and the local anesthetics, cocaine (0.1 mM) and lidocaine (0.5 mM). On the other hand, high [K+]-stimulated aerobic glycolysis that accompanies the acetylcholine-sensitive enhanced glial uptakes of Na+ and water is unaffected by acetylcholine (2 mM). Experiments done under a variety of metabolic conditions show that there exists a better correlation between diminished ATP content of the tissue and enhanced aerobic glycolysis than between tissue ATP and the ATP-dependent synthesis of glutamine. Whereas malonate (2 mM) and amino oxyacetate (5 mM) suppress ATP content and O2 uptake, stimulate lactate formation, but have little effect on glutamine levels, fluoroacetate (3 mM) suppresses glutamine synthesis in glia, presumably by suppressing the operation of the citric acid cycle, with little effect on ATP content, O2 uptake, and lactate formation. Exogenous citrate (5 mM), which may be transported and metabolized in glia but not in neurons, inhibits lactate formation by cell free acetone-dried powder extracts of brain cortex but not by brain cortex slices. These results suggest that the neuron is the major site of stimulated aerobic glycolysis in the brain, and that under our experimental conditions glycolysis in glia is under lesser stringent metabolic control than that in the neuron. Stimulation of aerobic glycolysis by protoveratrine occurs due to diminution of the energy charge of the neuron as a result of stimulation of the sodium pump following tetrodotoxin-sensitive influx of Na+; stimulation by high [K+], NH4+, or Ca2+ deprivation occurs partly by direct stimulation of key enzymes of glycolysis and partly by a fall in the tissue ATP concentration.

摘要

原藜芦碱(5微摩尔)刺激孵育的大鼠脑皮质切片的有氧糖酵解,伴随Na+神经元内流增强,此过程被河豚毒素(3微摩尔)以及局部麻醉药可卡因(0.1毫摩尔)和利多卡因(0.5毫摩尔)阻断。另一方面,高[K+]刺激的有氧糖酵解伴随乙酰胆碱敏感的胶质细胞对Na+和水摄取增强,不受乙酰胆碱(2毫摩尔)影响。在多种代谢条件下进行的实验表明,组织ATP含量降低与有氧糖酵解增强之间的相关性比组织ATP与ATP依赖的谷氨酰胺合成之间的相关性更好。丙二酸(2毫摩尔)和氨基氧乙酸(5毫摩尔)抑制ATP含量和O2摄取,刺激乳酸形成,但对谷氨酰胺水平影响很小,氟乙酸(3毫摩尔)抑制胶质细胞中的谷氨酰胺合成,可能是通过抑制柠檬酸循环的运转,对ATP含量、O2摄取和乳酸形成影响很小。外源性柠檬酸盐(5毫摩尔)可在胶质细胞而非神经元中转运和代谢,它抑制脑皮质无细胞丙酮干粉提取物的乳酸形成,但不抑制脑皮质切片的乳酸形成。这些结果表明,神经元是脑中受刺激的有氧糖酵解的主要部位,并且在我们的实验条件下,胶质细胞中的糖酵解比神经元中的受到的代谢控制更宽松。原藜芦碱刺激有氧糖酵解是由于河豚毒素敏感的Na+内流后钠泵受到刺激,导致神经元的能荷降低;高[K+]、NH4+或Ca2+缺乏引起的刺激部分是通过直接刺激糖酵解的关键酶,部分是通过组织ATP浓度下降。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验