Suppr超能文献

对于霍奇金-赫胥黎模型,脉冲传播速度对发放频率的依赖性——离散度

The dependence of impulse propagation speed on firing frequency, dispersion, for the Hodgkin-Huxley model.

作者信息

Miller R N, Rinzel J

出版信息

Biophys J. 1981 May;34(2):227-59. doi: 10.1016/S0006-3495(81)84847-3.

Abstract

Propagation speed of an impulse is influenced by previous activity. A pulse following its predecessor too closely may travel more slowly than a solitary pulse. In contrast, for some range of interspike intervals, a pulse may travel faster than normal because of a possible superexcitable phase of its predecessor's wake. Thus, in general, pulse speeds and interspike intervals will not remain constant during propagation. We consider these issues for the Hodgkin-Huxley cable equations. First, the relation between speed and frequency or interspike interval, the dispersion relation, is computed for particular solutions, steadily propagating periodic wave trains. For each frequency, omega, below some maximum frequency, omega max, we find two such solutions, one fast and one slow. The latter are likely unstable as a computational example illustrates. The solitary pulse is obtained in the limit as omega tends to zero. At high frequency, speed drops significantly below the solitary pulse speed; for 6.3 degrees C, the drop at omega max is greater than 60%. For an intermediate range of frequencies, supernormal speeds are found and these are correlated with oscillatory swings in sub- and superexcitability in the return to rest of an impulse. Qualitative consequences of the dispersion relation are illustrated with several different computed pulse train responses of the full cable equations for repetitively applied current pulses. Moreover, changes in pulse speed and interspike interval during propagation are predicted quantitatively by a simple kinematic approximation which applies the dispersion relation, instantaneously, to individual pulses. One example shows how interspike time intervals can be distorted during propagation from a ratio of 2:1 at input to 6:5 at a distance of 6.5 cm.

摘要

冲动的传播速度受先前活动的影响。紧跟在前一个脉冲之后的脉冲可能比单独的脉冲传播得更慢。相反,在一定的峰峰间隔范围内,由于其前一个脉冲后超兴奋阶段的可能存在,一个脉冲可能比正常情况传播得更快。因此,一般来说,在传播过程中脉冲速度和峰峰间隔不会保持恒定。我们针对霍奇金 - 赫胥黎电缆方程来考虑这些问题。首先,对于特定的解,即稳定传播的周期性波列,计算速度与频率或峰峰间隔之间的关系,即色散关系。对于每个低于某个最大频率(\omega_{max})的频率(\omega),我们找到两个这样的解,一个快一个慢。正如一个计算示例所示,后者可能是不稳定的。当(\omega)趋于零时,可得到孤立脉冲。在高频时,速度显著低于孤立脉冲速度;对于(6.3^{\circ}C),在(\omega_{max})处的下降大于(60%)。在中间频率范围内,会发现超常速度,并且这些速度与脉冲恢复静止时亚兴奋性和超兴奋性的振荡波动相关。通过对重复施加电流脉冲的完整电缆方程的几种不同计算脉冲序列响应,说明了色散关系的定性结果。此外,通过一种简单的运动学近似可以定量预测传播过程中脉冲速度和峰峰间隔的变化,该近似将色散关系即时应用于单个脉冲。一个例子展示了在传播过程中峰峰时间间隔是如何从输入时的(2:1)比例扭曲为在(6.5)厘米处的(6:5)比例的。

相似文献

3
Traveling wave solutions of a nerve conduction equation.一个神经传导方程的行波解
Biophys J. 1973 Dec;13(12):1313-37. doi: 10.1016/S0006-3495(73)86065-5.
9
Noise effects on spike propagation during the refractory period in the FitzHugh-Nagumo model.
J Theor Biol. 1993 May 7;162(1):41-59. doi: 10.1006/jtbi.1993.1075.
10
Mechanisms for nonuniform propagation along excitable cables.沿可兴奋电缆非均匀传播的机制。
Ann N Y Acad Sci. 1990;591:51-61. doi: 10.1111/j.1749-6632.1990.tb15080.x.

引用本文的文献

1
Electrophysiology.电生理学
Commun Pure Appl Math. 2013 Dec;66(12):1837-1913. doi: 10.1002/cpa.21484. Epub 2013 Oct 9.
2
Bistable nerve conduction.双稳态神经传导。
Biophys J. 2022 Sep 20;121(18):3499-3507. doi: 10.1016/j.bpj.2022.08.006. Epub 2022 Aug 12.
3
Axonal Conduction Velocity Measurement.轴突传导速度测量
Bio Protoc. 2017 Mar 5;7(5):e2152. doi: 10.21769/BioProtoc.2152.
7
Travelling waves in a neural field model with refractoriness.具有不应期的神经场模型中的行波
J Math Biol. 2014 Apr;68(5):1249-68. doi: 10.1007/s00285-013-0670-x. Epub 2013 Apr 2.
10
Dopamine modulates Ih in a motor axon.多巴胺调节运动轴突中的 Ih。
J Neurosci. 2010 Jun 23;30(25):8425-34. doi: 10.1523/JNEUROSCI.0405-10.2010.

本文引用的文献

1
Facilitation of conduction rate in nerve fibers.神经纤维传导速率的促进作用。
J Physiol. 1951 Jun;114(1-2):89-97. doi: 10.1113/jphysiol.1951.sp004605.
2
Ion movements during nerve activity.神经活动期间的离子运动。
Ann N Y Acad Sci. 1959 Aug 28;81:221-46. doi: 10.1111/j.1749-6632.1959.tb49311.x.
6
7
Traveling wave solutions of a nerve conduction equation.一个神经传导方程的行波解
Biophys J. 1973 Dec;13(12):1313-37. doi: 10.1016/S0006-3495(73)86065-5.
8
Dimensional analysis of nerve models.
J Theor Biol. 1973 Aug 22;40(3):517-41. doi: 10.1016/0022-5193(73)90008-8.
9
The frequency of nerve action potentials generated by applied currents.施加电流产生的神经动作电位的频率。
Proc R Soc Lond B Biol Sci. 1967 Jan 31;167(1006):64-86. doi: 10.1098/rspb.1967.0013.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验