Suppr超能文献

Interaction of 2-aminobicyclo[3.2.1]octane-2-carboxylic acid with the amino acid transport systems of the sarcoma 37 murine ascites tumor cell.

作者信息

Elliott M S, Matthews R H, Minton J P, Zand R

出版信息

Biochemistry. 1981 Sep 1;20(18):5105-8. doi: 10.1021/bi00521a002.

Abstract

The relatively broad and overlapping specificities of amino acid transport systems have made the synthesis of analogues specific to single transport systems desirable. The analogue in general use as a specific substrate for transport system L has been 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid (BCH). The affinity of BCH for the binding site of system L has been shown to be less than that of the natural substrate, leucine. Earlier studies from this laboratory suggested that higher homologues in a series could have greater affinity for system L. A higher homologue of BCH, 2-aminobicyclo[3.2.1]octane-2-carboxylic acid (ABOCA), has been synthesized and studied as a substrate and competitor for amino acid transport systems of the sarcoma 37 (S37) ascites cell. ABOCA inhibited the transport system dominant in the low concentration region for histidine uptake (system L) but had no effect on the uptake of labeled N-methyl-alpha-aminoisobutyric acid (MeAIB). MeAIB had no effect on labeled ABOCA uptake in S37 cells. ABOCA inhibited the uptakes of labeled leucine and labeled BCH competitively. Leucine, histidine, and BCH inhibited the uptake of labeled ABOCA competitively. Typical L system substrates demonstrated exchange effects with labeled ABOCA. The b isomer of ABOCA demonstrated slightly greater affinity for system L than did the a isomer. We conclude that ABOCA is an analogue restricted to interaction with amino acid transport system L, that it has greater affinity for system L than does BCH, and that its selection for system l is determined principally by an apolar interaction with steric considerations secondary.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验