Suppr超能文献

关于超导边界处电磁能量测量的相对性和不确定性。及其在生物系统对弱磁场感知中的应用。

On the relativity and uncertainty of electromagnetic energy measurement at a superconductive boundary. Application to perception of weak magnetic fields by living systems.

作者信息

Cope F W

出版信息

Physiol Chem Phys. 1981;13(3):231-9.

PMID:7301944
Abstract

From quantum mechanical and relativity principles applied to an observer using a bounded superconductive detector, any magnetic or electric field, which superficially may appear steady and homogeneous, should be perceived to have a wavelength and frequency which are functions of the size of the detector as well as of the energy density of the field. From the Heisenberg uncertainty principle, equations are derived for the uncertainties of measurement of field energy and of detector size as imposed by the principles of quantum mechanics, even if the instruments of measurement are perfect. If energy density is sufficiently low and/or size of detector is sufficiently small, then numerical values and geometries of the fields become unmeasurable by any experimental method but topological properties of the system may still be measurable. A method for estimation of size of superconductive microregions in materials or in living systems is derived. It is calculated that if superconductive microdetectors exist in living systems capable of detection of 0.1 to 1.0 gauss magnetic fields, then minimum superconductive detector diameters of 7.9 and 2.6 microns respectively are required, and these magnetic fields will have perceived effects equivalent to wavelengths of 7.9 and 2.6 microns respectively (the infrared region of light). The estimated detector sizes are comparable with the sizes of mitochondria, melanin granules, and retinal rods.

摘要

从应用于使用有界超导探测器的观察者的量子力学和相对论原理来看,任何表面上看似稳定且均匀的磁场或电场,都应被视为具有波长和频率,它们是探测器尺寸以及场的能量密度的函数。根据海森堡不确定性原理,即使测量仪器完美无缺,也能推导出由量子力学原理施加的场能量测量不确定性和探测器尺寸测量不确定性的方程。如果能量密度足够低和/或探测器尺寸足够小,那么场的数值和几何形状将无法通过任何实验方法测量,但系统的拓扑性质可能仍然可测。由此得出一种估算材料或生物系统中超导微区尺寸的方法。据计算,如果生物系统中存在能够检测0.1至1.0高斯磁场的超导微探测器,那么分别需要最小超导探测器直径为7.9微米和2.6微米,并且这些磁场将分别具有相当于7.9微米和2.6微米波长(光的红外区域)的可感知效应。估计的探测器尺寸与线粒体、黑色素颗粒和视杆细胞的尺寸相当。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验