Ruocco M J, Atkinson D, Small D M, Skarjune R P, Oldfield E, Shipley G G
Biochemistry. 1981 Oct 13;20(21):5957-66. doi: 10.1021/bi00524a006.
Differential scanning calorimetry and X-ray diffraction of anhydrous and hydrated N-palmitoylgalactosylsphingosine (NPGS) show evidence of complex polymorphic behavior and interconversions between stable and metastable structural forms. Anhydrous NPGS exhibits three lamellar crystal forms (A, B, and B') at temperatures below 143 degrees C and a liquid-crystal form between 143 and 180 degrees C before melting to an isotropic liquid at 180 degrees C. The crystal B leads to liquid-crystal transition is accompanied by an enthalpy change, delta H, of 11.2 kcal/mol of NPGS, while a relatively small enthalpy change (delta H = 0.8 kcal/mol) marks the liquid-crystal leads to liquid transition. The A and B' crystal forms do not hydrate readily at room temperature. When heated, crystal form A in the presence of water undergoes an exothermic transition at 52 degrees C to produce a thermodynamically stable hydrated crystal E form. X-ray diffraction shows that this stable bilayer crystal form has a highly ordered hydrocarbon chain packing arrangement; melting to the bilayer liquid-crystal form occurs at 82 degrees C with a large enthalpy change, delta H = 17.5 kcal/mol of NPGS. A complex liquid-crystal leads to crystal transition is observed on cooling; the cooling rate independent exotherm involves the transition of the hydrated liquid crystal to an intermediate metastable crystal form identical with anhydrous crystal form A. The subsequent cooling rate dependent step involves the conversion of the metastable crystal form A to the stable crystal form E. We suggest that hydrated crystal form E is stabilized by both a highly ordered chain packing mode and a lateral intermolecular hydrogen bonding network involving the sphingosine backbone, the galactosyl group, and interbilayer water molecules. Although disruption of both the specific hydrogen chain packing and H-bonding networks occurs at the high enthalpy transition to the bilayer liquid-crystal L alpha form, these two types of interactions are not reestablished simultaneously on cooling. First, recrystallization of the hydrocarbon chain accompanies removal of water from the lipid interface, leading to "dehydrated" metastable crystal form A. This is followed by a time-dependent, temperature-dependent hydration process which allows a rearrangement of the hydrogen-bonding matrix. Alterations in the NPGS-NPGS and NPGS-water interactions accompany further changes in the hydrocarbon chain packing and lead to the formation of the stable E form.
无水和水合N-棕榈酰半乳糖基鞘氨醇(NPGS)的差示扫描量热法和X射线衍射显示出复杂的多晶型行为以及稳定和亚稳结构形式之间的相互转变。无水NPGS在143℃以下呈现三种层状晶体形式(A、B和B'),在143至180℃之间为液晶形式,然后在180℃熔化为各向同性液体。晶体B向液晶的转变伴随着11.2千卡/摩尔NPGS的焓变ΔH,而相对较小的焓变(ΔH = 0.8千卡/摩尔)标志着液晶向液体的转变。A和B'晶体形式在室温下不易水合。加热时,在有水存在的情况下,晶体形式A在52℃发生放热转变,生成热力学稳定的水合晶体E形式。X射线衍射表明,这种稳定的双层晶体形式具有高度有序的烃链堆积排列;在82℃熔化为双层液晶形式,伴有较大的焓变,ΔH = 17.5千卡/摩尔NPGS。冷却时观察到复杂的液晶向晶体的转变;冷却速率无关的放热涉及水合液晶向与无水晶体形式A相同的中间亚稳晶体形式的转变。随后冷却速率相关的步骤涉及亚稳晶体形式A向稳定晶体形式E的转变。我们认为,水合晶体形式E通过高度有序的链堆积模式和涉及鞘氨醇主链、半乳糖基和双层间水分子的横向分子间氢键网络得以稳定。尽管在向双层液晶Lα形式的高焓转变时,特定的氢键链堆积和氢键网络都会被破坏,但在冷却时这两种相互作用不会同时重新建立。首先,烃链的重结晶伴随着脂质界面水的去除,导致“脱水”的亚稳晶体形式A。随后是一个随时间和温度变化的水合过程,这使得氢键基质得以重新排列。NPGS-NPGS和NPGS-水相互作用的改变伴随着烃链堆积的进一步变化,并导致稳定的E形式的形成。