Suppr超能文献

肝脏中的细胞膜电位与电阻

Cell membrane potential and resistance in liver.

作者信息

Graf J, Petersen O H

出版信息

J Physiol. 1978 Nov;284:105-26. doi: 10.1113/jphysiol.1978.sp012530.

Abstract
  1. Isolated segments of mouse liver were placed in a Perspex bath through which physiological saline solutions of varying composition were circulated. Two microelectrodes were inserted in different liver cells under microscopic control allowing measurement of distance between the two micro-electrode tips. Current pulses were injected through one of these electrodes, causing electrotonic potential changes in nearby cells by current spread through intercellular junctions. These electrotonic potential changes were recorded with the second micro-electrode. The spatial decrement of the amplitude of the electrotonzpotential changes and their dependence on extracellular ion concentrations were analysed by three-dimensional cable analysis, modified to account for the geometry of the tissue. 2. During exposure to control solution the mean resting cell membrane potential was -37 mV, the space constant for intracellular current spread (lambda3 = square root of Rm/chrRi) was 390 micron and Ri, a measure which includes the intracellular resistivity and the junctional resistances, was 1.4 komegacm. From these values, and an estimate of tissue cell membrane density (chi) obtained by others, the specific membrane resistance (Rm) was calculated to be 5.1 komegacm2. 3. Replacement of extracellular Na+ by K+ resulted in a large depolarization and a large decrease in the membrane resistance. Replacement of extracellular Na+ by choline resulted in a small transient hyperpolarization and a small increase in the membrane resistance. Replacement of extracellular Cl- by methylsulphate or sulphate or of NaCl by sucrose resulted in a small transient depolarization and a large increase in the membrane resistance. 4. Glucagon (10(-7) M) and adrenaline (10(-5) M) evoked membrane hyperpolarization and reduction of membrane resistance (Rm). 5. The resting membrane ion conductance can be considered to consist of three components, Cl conductance (GCl), GK and GNa. The results suggest that GCl greater than GK greater than GNa. Changes in extracellular ion concentrations specifically alter the permeability properties of the cell membrane. The glucagon action can be explained in part by an increase in GK.
摘要
  1. 将分离的小鼠肝脏片段置于有机玻璃浴槽中,使不同成分的生理盐溶液在其中循环。在显微镜控制下,将两个微电极插入不同的肝细胞中,以便测量两个微电极尖端之间的距离。通过其中一个电极注入电流脉冲,电流通过细胞间连接扩散,从而使附近细胞产生电紧张电位变化。用第二个微电极记录这些电紧张电位变化。通过三维电缆分析对电紧张电位变化幅度的空间衰减及其对细胞外离子浓度的依赖性进行分析,并对该分析进行了修改以适应组织的几何形状。2. 在暴露于对照溶液期间,平均静息细胞膜电位为-37 mV,细胞内电流传播的空间常数(λ3 = √Rm/χRi)为390微米,Ri(一种包括细胞内电阻率和连接电阻的测量值)为1.4 kΩ·cm。根据这些值以及其他人获得的组织细胞膜密度(χ)估计值,计算出比膜电阻(Rm)为5.1 kΩ·cm²。3. 用K⁺替代细胞外Na⁺导致大量去极化和膜电阻大幅降低。用胆碱替代细胞外Na⁺导致小的短暂超极化和膜电阻小幅增加。用甲基硫酸根或硫酸根替代细胞外Cl⁻或用蔗糖替代NaCl导致小的短暂去极化和膜电阻大幅增加。4. 胰高血糖素(10⁻⁷ M)和肾上腺素(10⁻⁵ M)引起膜超极化和膜电阻(Rm)降低。5. 静息膜离子电导可被认为由三个成分组成,Cl电导(GCl)、GK和GNa。结果表明GCl>GK>GNa。细胞外离子浓度的变化特异性地改变细胞膜的通透性特性。胰高血糖素的作用部分可通过GK增加来解释。

相似文献

1
Cell membrane potential and resistance in liver.肝脏中的细胞膜电位与电阻
J Physiol. 1978 Nov;284:105-26. doi: 10.1113/jphysiol.1978.sp012530.

引用本文的文献

2
Different Effects of Alcohol on the Liver and the Pancreas.酒精对肝脏和胰腺的不同影响。
Function (Oxf). 2021 Feb 19;2(2):zqab008. doi: 10.1093/function/zqab008. eCollection 2021.
4
Editorial: cell biology of the hepatobiliary system.社论:肝胆系统的细胞生物学
Wien Med Wochenschr. 2008;158(19-20):531-3. doi: 10.1007/s10354-008-0602-3.

本文引用的文献

3
Ionic movements and electrical activity in giant nerve fibres.巨神经纤维中的离子运动与电活动。
Proc R Soc Lond B Biol Sci. 1958 Jan 1;148(930):1-37. doi: 10.1098/rspb.1958.0001.
5
Electrical potential differences in the biliary tree.胆管树中的电位差。
Biochim Biophys Acta. 1968 Apr 29;150(3):509-17. doi: 10.1016/0005-2736(68)90151-x.
6
Origin of transmembrane potentials in non-excitable cells.非可兴奋细胞跨膜电位的起源。
J Theor Biol. 1970 Aug;28(2):287-96. doi: 10.1016/0022-5193(70)90056-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验