Suppr超能文献

胰腺腺泡细胞:乙酰胆碱平衡电位及其离子依赖性。

Pancreatic acinar cells: the acetylcholine equilibrium potential and its ionic dependency.

作者信息

Iwatsuki N, Petersen O H

出版信息

J Physiol. 1977 Aug;269(3):735-51. doi: 10.1113/jphysiol.1977.sp011926.

Abstract
  1. Two glass micro-electrodes were inserted into neighbouring cells from rat or mouse pancreatic segments, superfused in vitro. The tip of a third glass micro-electrode, filled with 2 M-AChCl, was placed just outside the acinus under investigation. Membrane potential and resistance, and changes in these parameters in response to short pulses of ACh stimulation, were recorded.2. The resting current-voltage relationship, obtained by injecting 100 msec depolarizing or hyperpolarizing current pulses through one of the intracellular micro-electrodes and recording the membrane potential with the other intracellular electrode, was linear within the range -5 to -60 mV.3. Injecting depolarizing or hyperpolarizing current (d.c.) through one of the intracellular micro-electrodes, the membrane potential (as measured with the other intracellular micro-electrode) could be set at various levels. The effect of ACh at different membrane potentials was investigated. When the acinar cell membrane was hyperpolarized, the amplitude of ACh-evoked depolarization was increased, while ACh-evoked depolarization was reduced when the membrane potential was reduced by depolarizing current, and finally changed into a hyperpolarization at very low membrane potentials. In each acinus investigated (rat and mouse), there was a linear relationship between amplitude of ACh-evoked potential change (DeltaV) (+ value or - value according to polarity) and resting membrane potential. During superfusion with control solution, the value of the membrane potential at which ACh did not evoke a potential change (E(ACh)) was about -15 mV in the mouse and about -20 mV in the rat. During superfusion with a chloride-free sulphate-containing solution (steady state), a linear relationship between DeltaV and resting membrane potential was again found but E(ACh) (mouse) was about +10 mV.4. A continuous rough estimate of E(ACh) was obtained by injecting repetitively depolarizing current pulses (100 msec) through one intracellular micro-electrode; in this way, the effect of ACh measured by the other intracellular electrode could be assessed simultaneously at the spontaneous resting level, and at a depolarized level. The direction of change in E(ACh) following acute changes in the superfusion fluid ion composition was assessed. Replacing extracellular chloride by sulphate caused an immediate change in E(ACh) in the positive direction. Re-admission of chloride, after a long period of chloride ion deprivation, caused an immediate sharp change in E(ACh) in the negative direction. Replacing extracellular sodium by Tris caused an immediate transient negative change in E(ACh). In contrast, taking away extracellular calcium changed E(ACh) in a positive direction. Augmenting extracellular potassium concentration to 40 mM caused a change in E(ACh) in the positive direction.5. At a membrane potential (V) equal to E(ACh) the sum of ionic currents evoked by the action of ACh is zero. Using the Goldman treatment, it appears that ACh increases membrane Na, K and Cl permeability. The approximate relative ion permeabilities of the pathways opened up by ACh are: P(Na)/P(K) = 2.5 and P(Cl)/P(K) = 5. At V = E(ACh), the approximate relative sizes of the ACh-evoked currents are: I(Na)/I(K) = 2.6 and I(Cl)/I(K) = 1.6 ACh, therefore, causes influx of Na and Cl and a small efflux of K.
摘要
  1. 将两根玻璃微电极插入大鼠或小鼠胰腺段的相邻细胞中,细胞在体外进行灌流。第三根充满2M - AChCl的玻璃微电极尖端置于所研究腺泡的外部。记录膜电位和电阻,以及对ACh刺激短脉冲响应时这些参数的变化。

  2. 通过一根细胞内微电极注入100毫秒的去极化或超极化电流脉冲,并使用另一根细胞内电极记录膜电位,得到的静息电流 - 电压关系在 - 5至 - 60mV范围内呈线性。

  3. 通过一根细胞内微电极注入去极化或超极化直流电,可将膜电位(用另一根细胞内微电极测量)设定在不同水平。研究了不同膜电位下ACh的作用。当腺泡细胞膜超极化时,ACh诱发的去极化幅度增加,而当通过去极化电流降低膜电位时,ACh诱发的去极化减小,最终在非常低的膜电位下变为超极化。在所研究的每个腺泡(大鼠和小鼠)中,ACh诱发的电位变化幅度(ΔV,根据极性为正值或负值)与静息膜电位之间存在线性关系。在对照溶液灌流期间,ACh不诱发电位变化时的膜电位值(E(ACh))在小鼠中约为 - 15mV,在大鼠中约为 - 20mV。在无氯含硫酸盐溶液灌流(稳态)期间,再次发现ΔV与静息膜电位之间呈线性关系,但E(ACh)(小鼠)约为 + 10mV。

  4. 通过一根细胞内微电极重复注入去极化电流脉冲(100毫秒),对E(ACh)进行连续粗略估计;通过这种方式,可同时在自发静息水平和去极化水平评估另一根细胞内电极测量的ACh效应。评估灌流液离子组成急性变化后E(ACh)的变化方向。用硫酸盐替代细胞外氯离子导致E(ACh)立即向正方向变化。在长时间剥夺氯离子后重新引入氯离子,导致E(ACh)立即向负方向急剧变化。用Tris替代细胞外钠离子导致E(ACh)立即出现短暂的负向变化。相反,去除细胞外钙离子使E(ACh)向正方向变化。将细胞外钾离子浓度增加到40mM导致E(ACh)向正方向变化。

  5. 在膜电位(V)等于E(ACh)时,ACh作用诱发的离子电流总和为零。使用戈德曼方程计算,似乎ACh增加了膜对Na、K和Cl的通透性。ACh打开的通道的近似相对离子通透性为:P(Na)/P(K) = 2.5,P(Cl)/P(K) = 5。在V = E(ACh)时,ACh诱发电流的近似相对大小为:I(Na)/I(K) = 2.6,I(Cl)/I(K) = 1.6。因此,ACh导致Na和Cl内流以及少量K外流。

相似文献

1
Pancreatic acinar cells: the acetylcholine equilibrium potential and its ionic dependency.
J Physiol. 1977 Aug;269(3):735-51. doi: 10.1113/jphysiol.1977.sp011926.
3
5
Pancreatic acinar cells: the role of calcium in stimulus-secretion coupling.
J Physiol. 1976 Jan;254(3):583-606. doi: 10.1113/jphysiol.1976.sp011248.
6
Mouse pancreatic acinar cells: voltage-clamp study of acetylcholine-evoked membrane current.
J Physiol. 1981 Sep;318:57-71. doi: 10.1113/jphysiol.1981.sp013850.
8
Pancreatic acinar cells: acetylcholine-evoked electrical uncoupling and its ionic dependency.
J Physiol. 1978 Jan;274:81-06. doi: 10.1113/jphysiol.1978.sp012135.
9

引用本文的文献

1
Function and Regulation of the Calcium-Activated Chloride Channel Anoctamin 1 (TMEM16A).
Handb Exp Pharmacol. 2024;283:101-151. doi: 10.1007/164_2022_592.
2
Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion.
Physiol Rev. 2012 Jan;92(1):39-74. doi: 10.1152/physrev.00011.2011.
3
Mouse pancreatic acinar cells: the anion selectivity of the acetylcholine-opened chloride pathway.
J Physiol. 1980 Sep;306:481-92. doi: 10.1113/jphysiol.1980.sp013409.
5
Mouse pancreatic acinar cells: voltage-clamp study of acetylcholine-evoked membrane current.
J Physiol. 1981 Sep;318:57-71. doi: 10.1113/jphysiol.1981.sp013850.
6
Amino acid-evoked membrane potential and resistance changes in pancreatic acinar cells.
Pflugers Arch. 1980 Jul;386(2):153-9. doi: 10.1007/BF00584203.
7
Effect of carbachol on radiosodium uptake by dispersed pancreatic acinar cells.
Pflugers Arch. 1980 May;385(2):131-6. doi: 10.1007/BF00588692.
10
Voltage clamp study of stimulant-evoked currents in mouse pancreatic acinar cells.
Pflugers Arch. 1983 Sep;399(1):54-62. doi: 10.1007/BF00652522.

本文引用的文献

1
The effect of sodium ions on the electrical activity of giant axon of the squid.
J Physiol. 1949 Mar 1;108(1):37-77. doi: 10.1113/jphysiol.1949.sp004310.
2
Effects of calcium on the conductance change of the end-plate membrane during the action of transmitter.
J Physiol. 1963 Jun;167(1):141-55. doi: 10.1113/jphysiol.1963.sp007137.
3
Electrolyte and inulin spaces of rat salivary glands and pancreas.
Am J Physiol. 1960 Oct;199:649-52. doi: 10.1152/ajplegacy.1960.199.4.649.
4
Stimulation of amylase secretion from the perfused cat pancreas by potassium and other alkali metal ions.
J Physiol. 1971 Aug;216(3):611-24. doi: 10.1113/jphysiol.1971.sp009543.
5
The action of scretin, cholecystokinin-pancreozymin and caerulein on pancreatic secretion in the rat.
J Physiol. 1972 Sep;225(3):679-92. doi: 10.1113/jphysiol.1972.sp009963.
6
Pancreatic acinar cells: membrane potential and resistance change evoked by acetylcholine.
J Physiol. 1974 Apr;238(1):145-58. doi: 10.1113/jphysiol.1974.sp010515.
7
Electrical changes in the membrane in junctional transmission.
Biochim Biophys Acta. 1973 Nov 28;300(3):289-317. doi: 10.1016/0304-4157(73)90007-5.
8
Transport and metabolism of calcium ions in nerve.
Prog Biophys Mol Biol. 1972;24:177-223. doi: 10.1016/0079-6107(72)90007-7.
9
Secretion of electrolytes by the pancreas of the anaestetized rat.
J Physiol. 1975 Nov;252(2):379-96. doi: 10.1113/jphysiol.1975.sp011149.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验