Suppr超能文献

重复基因座处的基因沉默速率:来自四倍体鱼类数据的理论研究与解读

Rate of gene silencing at duplicate loci: a theoretical study and interpretation of data from tetraploid fishes.

作者信息

Li W H

出版信息

Genetics. 1980 May;95(1):237-58. doi: 10.1093/genetics/95.1.237.

Abstract

A large-scale simulation has been conducted on the rate of gene loss at duplicate loci under irreversible mutation. It is found that tight linkage does not provide a strong sheltering effect, as thought by previous authors; indeed, the mean loss time for the case of tight linkage is of the same order of magnitude as that for no linkage, as long as Nu is nt much larger than 1, where N is the effective population size and u the mutation rate. When Nu is 0.01 or less, the two loci behave almost as neutral loci, regardless of linkage, and the mean loss time is about only half the mean extinction time for a neutral allele under irreversible mutation. However, the former becomes two or more times larger than the latter when Nu greater than or equal to 1.----In the simulation, the sojourn times in the frequency intervals (0, 0.01) and 0.99, 1) and the time for the frequency of the null allele to reach 0.99 at one of the two loci have also been recorded. The results show that the population is monomorphic for the normal allele most of the time if Nu less than or equal to 0.01, but polymorphic for the null and the normal alleles most of the time if Nu greater than or equal to 0.1.----The distribution of the frequency of the null allele in an equilibrium tetraploid population has been studied analytically. The present results have been applied to interpret data from some fish groups that are of tetraploid origin, and a model for explaining the slow rate of gene loss in these fishes is proposed.

摘要

针对不可逆突变下重复基因座处的基因丢失率进行了大规模模拟。研究发现,紧密连锁并不像先前作者认为的那样能提供强大的庇护效应;实际上,只要Nu不远大于1(其中N是有效种群大小,u是突变率),紧密连锁情况下的平均丢失时间与无连锁情况下的平均丢失时间处于同一数量级。当Nu为0.01或更小时,无论连锁情况如何,这两个基因座的行为几乎如同中性基因座,且平均丢失时间仅约为不可逆突变下中性等位基因平均灭绝时间的一半。然而,当Nu大于或等于1时,前者会比后者大两倍或更多倍。——在模拟中,还记录了在频率区间(0, 0.01)和(0.99, 1)的停留时间以及两个基因座之一处无效等位基因频率达到0.99的时间。结果表明,如果Nu小于或等于0.01,种群在大多数时间里对于正常等位基因是单态的,但如果Nu大于或等于0.1,种群在大多数时间里对于无效等位基因和正常等位基因是多态的。——对平衡四倍体种群中无效等位基因频率的分布进行了分析研究。目前的结果已被用于解释来自一些四倍体起源鱼类群体的数据,并提出了一个解释这些鱼类基因丢失率缓慢的模型。

相似文献

2
Gene duplication in tetraploid fish: model for gene silencing at unlinked duplicated loci.
Proc Natl Acad Sci U S A. 1978 Nov;75(11):5575-9. doi: 10.1073/pnas.75.11.5575.
3
Polymorphism and loss of duplicate gene expression: a theoretical study with application of tetraploid fish.
Proc Natl Acad Sci U S A. 1979 Sep;76(9):4521-5. doi: 10.1073/pnas.76.9.4521.
4
Sojourn times and substitution rate at overdominant and linked neutral loci.
Genetics. 2000 Jun;155(2):921-7. doi: 10.1093/genetics/155.2.921.
5
Allele frequencies at microsatellite loci: the stepwise mutation model revisited.
Genetics. 1993 Mar;133(3):737-49. doi: 10.1093/genetics/133.3.737.
7
The effect of linkage and population size on inbreeding depression due to mutational load.
Genet Res. 1992 Feb;59(1):49-61. doi: 10.1017/s0016672300030160.
8
Gene conversion, linkage, and the evolution of repeated genes dispersed among multiple chromosomes.
Genetics. 1990 Sep;126(1):261-76. doi: 10.1093/genetics/126.1.261.
10
Duplicate gene expression in diploid and tetraploid loaches (Cypriniformes, Cobitidae).
Biochem Genet. 1977 Dec;15(11-12):1097-112. doi: 10.1007/BF00484500.

引用本文的文献

1
HSDSnake: a user-friendly SnakeMake pipeline for analysis of duplicate genes in eukaryotic genomes.
Bioinformatics. 2025 Jun 2;41(6). doi: 10.1093/bioinformatics/btaf325.
3
The evolution of NLRC3 subfamily genes in Sebastidae teleost fishes.
BMC Genomics. 2023 Nov 14;24(1):683. doi: 10.1186/s12864-023-09785-5.
4
HSDFinder: A BLAST-Based Strategy for Identifying Highly Similar Duplicated Genes in Eukaryotic Genomes.
Front Bioinform. 2021 Dec 16;1:803176. doi: 10.3389/fbinf.2021.803176. eCollection 2021.
6
Can Introns Stabilize Gene Duplication?
Biology (Basel). 2022 Jun 20;11(6):941. doi: 10.3390/biology11060941.
7
A Population-Genetic Lens into the Process of Gene Loss Following Whole-Genome Duplication.
Mol Biol Evol. 2022 Jun 2;39(6). doi: 10.1093/molbev/msac118.
8
Convergent evolution of polyploid genomes from across the eukaryotic tree of life.
G3 (Bethesda). 2022 May 30;12(6). doi: 10.1093/g3journal/jkac094.
9
Diversified regulation of circadian clock gene expression following whole genome duplication.
PLoS Genet. 2020 Oct 8;16(10):e1009097. doi: 10.1371/journal.pgen.1009097. eCollection 2020 Oct.

本文引用的文献

2
Enzyme evolution. I. The importance of untranslatable intermediates.
Genetics. 1972 Oct;72(2):297-316. doi: 10.1093/genetics/72.2.297.
3
Evolution in action.
Nature. 1974 Feb 1;247(5439):261-4. doi: 10.1038/247261a0.
5
Subunit constitution of proteins: a table.
Arch Biochem Biophys. 1975 Feb;166(2):651-82. doi: 10.1016/0003-9861(75)90432-4.
7
Loss of duplicate gene expression after polyploidisation.
Nature. 1977 Jan 20;265(5591):258-60. doi: 10.1038/265258a0.
8
Protein polymorphism and the rate of loss of duplicate gene expression.
Nature. 1978 Mar 2;272(5648):76-8. doi: 10.1038/272076a0.
9
Isozyme loci in brown trout (Salmo trutta L.): detection and interpretation from population data.
Hereditas. 1977;86(2):179-90. doi: 10.1111/j.1601-5223.1977.tb01228.x.
10
Duplicate gene expression in tetraploid fishes of the tribe Moxostomatini (Cypriniformes, Catostomidae).
Comp Biochem Physiol B. 1979;63(1):7-12. doi: 10.1016/0305-0491(79)90226-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验