Takahata N, Maruyama T
Proc Natl Acad Sci U S A. 1979 Sep;76(9):4521-5. doi: 10.1073/pnas.76.9.4521.
We studied the fixation of null alleles at independent duplicate loci, assuming that wild-type active alleles mutate irreversibly to nonfunctional null alleles and that the population is finite and panmictic. Solving the two-dimensional Kolmogorov backward equation numerically, we obtained the rate at which one of the active genes is lost and the amount of heterozygosity at specified times. Previously harmful genes, including recessive lethals, can be fixed at one of the duplicate loci, which would not happen with a single locus. Examination of data from several fish families showed that the rate of fixation of null alleles is too slow and the amount of heterozygosity too small to be compatible with complete recessivity at all loci. Our conclusion differs in this regard from that of Bailey et al. [Bailey, G.S., Poulter, R. T. M. & Stockwell, P. A. (1978) Proc. Natl. Acad. Sci. USA 75, 5575--5579]. They also reported that the time taken for 50% of the loci to be fixed for null alleles is approximately 15N + v-3/4, in which N and v are the effective population sizgote is lethal. We found that the fixation rate depends not only on N, but also on Nv.
我们研究了独立重复基因座上无效等位基因的固定情况,假设野生型活性等位基因不可逆地突变为无功能的无效等位基因,且种群数量有限且随机交配。通过数值求解二维柯尔莫哥洛夫向后方程,我们得到了其中一个活性基因丢失的速率以及特定时间的杂合度。先前有害的基因,包括隐性致死基因,可在其中一个重复基因座上固定下来,而单个基因座则不会出现这种情况。对几个鱼类家族数据的研究表明,无效等位基因的固定速率过慢,杂合度过低,无法与所有基因座的完全隐性相匹配。在这方面,我们的结论与贝利等人的不同[贝利,G.S.,波尔特,R.T.M. & 斯托克韦尔,P.A.(1978年)《美国国家科学院院刊》75,5575 - 5579]。他们还报告说,50%的基因座固定为无效等位基因所需的时间约为15N + v - 3/4,其中N和v分别是有效种群大小和杂合子致死率。我们发现固定速率不仅取决于N,还取决于Nv。