Galim E B, Hruska K, Bier D M, Matthews D E, Haymond M W
J Clin Invest. 1980 Dec;66(6):1295-304. doi: 10.1172/JCI109981.
To investigate the contribution of branched-chain amino acids as a nitrogen source for alanine in vivo, dogs were infused with l-[(15)N]leucine, l-[U-(14)C]leucine, l-[2,3,3,3-(2)H(4)]alanine, and d-[6,6-(2)H(2)]-glucose. (14)C and (15)N isotopic equilibrium in plasma leucine, and deuterium enrichment in arterial and femoral plasma glucose and alanine were achieved within 3 h of initiation of the respective isotope infusion in all animals. The average flux of leucine determined by [(15)N]leucine was 5.4 mumol.kg(-1).min(-1), whereas using [(14)C]leucine it was 3.7 mumol.kg(-1).min(-1). Turnover rates for alanine and glucose were 11.0 and 17.2 mumol.kg(-1).min(-1), respectively.[(15)N]alanine was detected as early as 30 min, but nitrogen isotopic equilibrium in alanine was not achieved until 6 h. The absolute rate of leucine nitrogen transfer to alanine was 1.92 mumol.kg(-1).min(-1), which represented 41-73% (mean 53%) of leucine's nitrogen and 15-20% (mean 18%) of alanine's nitrogen. Fractional extraction of alanine and leucine by the dog hindlimb was 35 and 24%, respectively. Average net alanine balance was -6.7 mumol.leg(-1).min(-1), reflecting a release rate (17.4 mumol.kg(-1).min(-1)) that exceeded the rate of uptake (10.8 mumol.leg(-1).min(-1)). Of the leucine taken up by the hindlimb, 34% transferred its nitrogen to alanine and 8% was oxidized to CO(2). Since the latter value reflects transamination as well as irreversible catabolism, the nitrogen derived from the oxidation of leucine by the hindlimb could account for only 25% of the observed (15)N incorporation into alanine. The significantly faster flux of leucine nitrogen when compared with leucine carbon suggests significant recycling of the leucine alpha-ketoacid. These studies demonstrate that leucine is a major donor of nitrogen to circulating alanine in vivo.
为了研究支链氨基酸作为体内丙氨酸氮源的作用,给狗输注L-[(15)N]亮氨酸、L-[U-(14)C]亮氨酸、L-[2,3,3,3-(2)H(4)]丙氨酸和D-[6,6-(2)H(2)]-葡萄糖。在所有动物中,分别在开始输注相应同位素后的3小时内,血浆亮氨酸中的(14)C和(15)N同位素达到平衡,动脉和股血浆葡萄糖及丙氨酸中的氘富集也达到平衡。由[(15)N]亮氨酸测定的亮氨酸平均通量为5.4 μmol·kg(-1)·min(-1),而使用[(14)C]亮氨酸时为3.7 μmol·kg(-1)·min(-1)。丙氨酸和葡萄糖的周转率分别为11.0和17.2 μmol·kg(-1)·min(-1)。[(15)N]丙氨酸最早在30分钟时被检测到,但丙氨酸中的氮同位素平衡直到6小时才达到。亮氨酸氮向丙氨酸转移的绝对速率为1.92 μmol·kg(-1)·min(-1),占亮氨酸氮的41 - 73%(平均53%)和丙氨酸氮的15 - 20%(平均18%)。狗后肢对丙氨酸和亮氨酸的分数提取率分别为35%和24%。丙氨酸的平均净平衡为-6.7 μmol·腿(-1)·min(-1),反映出释放速率(17.4 μmol·kg(-1)·min(-1))超过摄取速率(10.8 μmol·腿(-1)·min(-1))。后肢摄取的亮氨酸中,34%将其氮转移到丙氨酸中,8%被氧化为CO(2)。由于后一个值反映了转氨基作用以及不可逆的分解代谢,后肢亮氨酸氧化产生的氮仅占观察到的(15)N掺入丙氨酸的25%。与亮氨酸碳相比,亮氨酸氮的通量明显更快,这表明亮氨酸α-酮酸有显著的再循环。这些研究表明,亮氨酸是体内循环丙氨酸的主要氮供体。