Suppr超能文献

嗜盐菌细胞膜囊泡中细菌视紫红质光循环与质子动力之间的偶联。II. M----bR反应的定量与初步建模

Coupling between the bacteriorhodopsin photocycle and the protonmotive force in Halobacterium halobium cell envelope vesicles. II. Quantitation and preliminary modeling of the M----bR reactions.

作者信息

Groma G I, Helgerson S L, Wolber P K, Beece D, Dancsházy Z, Keszthelyi L, Stoeckenius W

出版信息

Biophys J. 1984 May;45(5):985-92. doi: 10.1016/S0006-3495(84)84243-5.

Abstract

The cell membrane of Halobacterium halobium (H. halobium) contains the proton-pump bacteriorhodopsin, which generates a light-driven transmembrane protonmotive force. The interaction of the bacteriorhodopsin photocycle with the electric potential component of the protonmotive force has been investigated. H. halobium cell envelope vesicles have been prepared by sonication and further purified by ultracentrifugation on Ficoll/NaCl/CsCl density gradients. Under continuous illumination (550 +/- 50 nm) varied from 0 to 40 mW cm-2, the vesicles maintain a membrane potential of 0 to -100 mV. The membrane potential was measured by flow dialysis of 3H-TPMP+ uptake and could be abolished by the uncoupler carbonylcyanide-m-chlorophenylhydrazone. Time-resolved absorption spectroscopy was used to measure the decay kinetics of the M photocycle intermediate, which was initiated by a weak laser flash (588 nm), while the vesicles were continuously illuminated as above. The M decay kinetics were fitted with two exponential decays by a computer deconvolution program. The faster decaying form decreases in amplitude (70 to 10% of the total) and the slower decaying form increases in amplitude and lifetime (23 to 42 ms) as the background light intensity increases. Although any correlation between the membrane potential and the bacteriorhodopsin photocycle M-forms is complex, the present data will allow specific tests of the physical mechanism for this interaction to be designed and conducted.

摘要

嗜盐菌(Halobacterium halobium)的细胞膜含有质子泵细菌视紫红质,它能产生光驱动的跨膜质子动力。人们已经研究了细菌视紫红质光循环与质子动力的电势成分之间的相互作用。通过超声破碎制备嗜盐菌细胞包膜囊泡,并在Ficoll/NaCl/CsCl密度梯度上通过超速离心进一步纯化。在0至40 mW cm-2的连续光照(550 +/- 50 nm)下,囊泡维持0至-100 mV的膜电位。通过3H-TPMP+摄取的流动透析测量膜电位,该电位可被解偶联剂羰基氰化物间氯苯腙消除。时间分辨吸收光谱用于测量M光循环中间体的衰减动力学,该中间体由弱激光闪光(588 nm)引发,同时囊泡如上述持续光照。通过计算机去卷积程序将M衰减动力学拟合为两个指数衰减。随着背景光强度增加,较快衰减形式的幅度减小(占总量的70%至10%),较慢衰减形式的幅度和寿命增加(23至42毫秒)。尽管膜电位与细菌视紫红质光循环M形式之间的任何相关性都很复杂,但目前的数据将允许设计和进行针对这种相互作用物理机制的特定测试。

相似文献

3
Light-driven primary sodium ion transport in Halobacterium halobium membranes.
J Supramol Struct. 1980;13(1):83-92. doi: 10.1002/jss.400130108.
6
Effect of light-adaptation on the photoreaction of bacteriorhodopsin from Halobacterium halobium.
Biochim Biophys Acta. 1977 Dec 23;462(3):575-82. doi: 10.1016/0005-2728(77)90102-5.
8
Na+ transport via Na+/H+ antiport in Halobacterium halobium envelope vesicles.
FEBS Lett. 1980 Aug 11;117(1):354-8. doi: 10.1016/0014-5793(80)80979-3.
9
On the ratio of the proton and photochemical cycles in bacteriorhodopsin.
Biochemistry. 1981 Oct 13;20(21):5950-7. doi: 10.1021/bi00524a005.

引用本文的文献

1
Mechanism of voltage-sensitive fluorescence in a microbial rhodopsin.
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):5939-44. doi: 10.1073/pnas.1215595110. Epub 2013 Mar 25.
2
Near-IR resonance Raman spectroscopy of archaerhodopsin 3: effects of transmembrane potential.
J Phys Chem B. 2012 Dec 20;116(50):14592-601. doi: 10.1021/jp309996a. Epub 2012 Dec 11.
3
Influence of an electrical potential on the charge transfer kinetics of bacteriorhodopsin.
Biophys J. 1990 Sep;58(3):653-63. doi: 10.1016/S0006-3495(90)82408-5.
4
Bacteriorhodopsin wildtype and variant aspartate-96 --> aspargine as reversible holographic media.
Biophys J. 1990 Jul;58(1):83-93. doi: 10.1016/S0006-3495(90)82355-9.
5
How Many M Forms are there in the Bacteriorhodopsin Photocycle?
Biophys J. 1986 Aug;50(2):357-66. doi: 10.1016/S0006-3495(86)83469-5.
6
Bacteriorhodopsin photocycle at cryogenic temperatures reveals distributed barriers of conformational substates.
Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9621-6. doi: 10.1073/pnas.0703859104. Epub 2007 May 29.
7
Independent photocycles of the spectrally distinct forms of bacteriorhodopsin.
Proc Natl Acad Sci U S A. 1988 Sep;85(17):6358-61. doi: 10.1073/pnas.85.17.6358.
9
The voltage-dependent proton pumping in bacteriorhodopsin is characterized by optoelectric behavior.
Biophys J. 2001 Oct;81(4):2059-68. doi: 10.1016/S0006-3495(01)75855-9.

本文引用的文献

1
Action spectrum and quantum efficiency for proton pumping in Halobacterium halobium.
Biochemistry. 1980 May 13;19(10):2152-9. doi: 10.1021/bi00551a024.
2
Procedure for testing kinetic models of the photocycle of bacteriorhodopsin.
Biophys J. 1982 May;38(2):161-74. doi: 10.1016/S0006-3495(82)84543-8.
5
Dynamics of ligand binding to myoglobin.
Biochemistry. 1975 Dec 2;14(24):5355-73. doi: 10.1021/bi00695a021.
6
Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium.
Biophys J. 1975 Sep;15(9):955-62. doi: 10.1016/S0006-3495(75)85875-9.
7
9
The quantum efficiency for the photochemical conversion of the purple membrane protein.
Biophys J. 1977 Feb;17(2):185-91. doi: 10.1016/S0006-3495(77)85636-1.
10
Branching reactions in the photocycle of bacteriorhodopsin.
FEBS Lett. 1978 Sep 15;93(2):266-70. doi: 10.1016/0014-5793(78)81118-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验