Suppr超能文献

发育中的皮质神经元网络中同步爆发的产生和传播机制。

The mechanisms of generation and propagation of synchronized bursting in developing networks of cortical neurons.

作者信息

Maeda E, Robinson H P, Kawana A

机构信息

NTT Basic Research Laboratories, Atsugi-shi, Japan.

出版信息

J Neurosci. 1995 Oct;15(10):6834-45. doi: 10.1523/JNEUROSCI.15-10-06834.1995.

Abstract

The characteristics and mechanisms of synchronized firing in developing networks of cultured cortical neurons were studied using multisite recording through planar electrode arrays (PEAs). With maturation of the network (from 3 to 40 d after plating), the frequency and propagation velocity of bursts increased markedly (approximately from 0.01 to 0.5 Hz and from 5 to 100 mm/sec, respectively), and the sensitivity to extracellular magnesium concentration (0-10 mM) decreased. The source of spontaneous bursts, estimated from the relative delay of onset of activity between electrodes, varied randomly with each burst. Physical separation of synchronously bursting networks into several parts using an ultraviolet laser, divided synchronous bursting into different frequencies and phases in each part. Focal stimulation through the PEA was effective at multiple sites in eliciting bursts, which propagated over the network from the site of stimulation. Stimulated bursts exhibited both an absolute refractory period and a relative refractory period, in which partially propagating bursts could be elicited. Periodic electrical stimulation (at 1 to 30 sec intervals) produced slower propagation velocities and smaller numbers of spikes per burst at shorter stimulation intervals. These results suggest that the generation and propagation of spontaneous synchronous bursts in cultured cortical neurons is governed by the level of spontaneous presynaptic firing, by the degree of connectivity of the network, and by a distributed balance between excitation and recovery processes.

摘要

利用平面电极阵列(PEA)进行多位点记录,研究了培养的皮质神经元发育网络中同步放电的特征和机制。随着网络成熟(接种后3至40天),爆发的频率和传播速度显著增加(分别从约0.01 Hz增加到0.5 Hz,从5 mm/sec增加到100 mm/sec),并且对细胞外镁浓度(0 - 10 mM)的敏感性降低。根据电极之间活动开始的相对延迟估计,自发爆发的来源随每次爆发而随机变化。使用紫外激光将同步爆发的网络物理分离成几个部分,每个部分的同步爆发被分成不同的频率和相位。通过PEA进行的局灶性刺激在多个位点有效地引发了爆发,这些爆发从刺激位点在网络中传播。受刺激的爆发表现出绝对不应期和相对不应期,在相对不应期可以引发部分传播的爆发。周期性电刺激(间隔1至30秒)在较短刺激间隔时产生较慢的传播速度和每次爆发较少的尖峰数量。这些结果表明,培养的皮质神经元中自发同步爆发的产生和传播受自发突触前放电水平、网络连接程度以及兴奋与恢复过程之间的分布式平衡的控制。

相似文献

引用本文的文献

1
Dissociated neuronal cultures as model systems for self-organized prediction.作为自组织预测模型系统的解离神经元培养物
Front Neural Circuits. 2025 Jun 25;19:1568652. doi: 10.3389/fncir.2025.1568652. eCollection 2025.
4
Network state transitions during cortical development.皮层发育过程中的网络状态转变。
Nat Rev Neurosci. 2024 Aug;25(8):535-552. doi: 10.1038/s41583-024-00824-y. Epub 2024 May 23.
8
Flexibility of cortical circuits influences resilience from microtrauma.皮质回路的灵活性影响微创伤后的恢复力。
Front Cell Neurosci. 2022 Dec 16;16:991740. doi: 10.3389/fncel.2022.991740. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验