Po Ho Fai, Houben Akke Mats, Haeb Anna-Christina, Jenkins David Rhys, Hill Eric J, Parri H Rheinallt, Soriano Jordi, Saad David
Department of Mathematics, Aston University, Birmingham B4 7ET, United Kingdom.
Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona E-08028, Spain.
PNAS Nexus. 2024 Dec 19;4(1):pgae565. doi: 10.1093/pnasnexus/pgae565. eCollection 2025 Jan.
Understanding the relation between cortical neuronal network structure and neuronal activity is a fundamental unresolved question in neuroscience, with implications to our understanding of the mechanism by which neuronal networks evolve over time, spontaneously or under stimulation. It requires a method for inferring the structure and composition of a network from neuronal activities. Tracking the evolution of networks and their changing functionality will provide invaluable insight into the occurrence of plasticity and the underlying learning process. We devise a probabilistic method for inferring the effective network structure by integrating techniques from Bayesian statistics, statistical physics, and principled machine learning. The method and resulting algorithm allow one to infer the effective network structure, identify the excitatory and inhibitory type of its constituents, and predict neuronal spiking activity by employing the inferred structure. We validate the method and algorithm's performance using synthetic data, spontaneous activity of an in silico emulator, and realistic in vitro neuronal networks of modular and homogeneous connectivity, demonstrating excellent structure inference and activity prediction. We also show that our method outperforms commonly used existing methods for inferring neuronal network structure. Inferring the evolving effective structure of neuronal networks will provide new insight into the learning process due to stimulation in general and will facilitate the development of neuron-based circuits with computing capabilities.
理解皮层神经元网络结构与神经元活动之间的关系是神经科学中一个尚未解决的基本问题,这对于我们理解神经元网络随时间自发或在刺激下如何演化的机制具有重要意义。这需要一种从神经元活动推断网络结构和组成的方法。追踪网络的演化及其不断变化的功能将为可塑性的发生和潜在的学习过程提供宝贵的见解。我们通过整合贝叶斯统计、统计物理和有原则的机器学习技术,设计了一种用于推断有效网络结构的概率方法。该方法及由此产生的算法使人们能够推断有效网络结构,识别其组成部分的兴奋性和抑制性类型,并利用推断出的结构预测神经元的放电活动。我们使用合成数据、计算机模拟器的自发活动以及具有模块化和均匀连接性的真实体外神经元网络来验证该方法和算法的性能,结果表明其具有出色的结构推断和活动预测能力。我们还表明,我们的方法优于现有的常用神经元网络结构推断方法。推断神经元网络不断演化的有效结构将为一般刺激下的学习过程提供新的见解,并将促进具有计算能力的基于神经元的电路的发展。