Suppr超能文献

NK1速激肽拮抗剂N端片段的定量构效关系(QSARs):经典QSARs与基于相似性矩阵的三维QSARs的比较

Quantitative structure-activity relationships (QSARs) of N-terminus fragments of NK1 tachykinin antagonists: a comparison of classical QSARs and three-dimensional QSARs from similarity matrices.

作者信息

Horwell D C, Howson W, Higginbottom M, Naylor D, Ratcliffe G S, Williams S

机构信息

Parke-Davis Neuroscience Research Centre, Cambridge University Forvie Site, U.K.

出版信息

J Med Chem. 1995 Oct 27;38(22):4454-62. doi: 10.1021/jm00022a010.

Abstract

The ability of three-dimensional quantitative structure-activity relationships (QSARs) derived from classical QSAR descriptors and similarity indices to rationalize the activity of 28 N-terminus fragments of tachykinin NK1 receptor antagonists was examined. Two different types of analyses, partial least squares and multiple regression, were performed in order to check the robustness of each derived model. The models derived using classical QSAR descriptors lacked accurate quantitative and predictive abilities to describe the nature of the receptor-inhibitor interaction. However models derived using 3D QSAR descriptors based on similarity indices were both robust and significantly predictive. The best model was obtained through the statistical analysis of molecular field similarity indices (n = 28, r2 = 0.846, r(cv)2 = 0.737, s = 0.987, PRESS = 7.102) suggesting that electronic and size-related properties are the most relevant in explaining the affinity data of the training set. The overall quality and predictive ability of the models applied to the test set appear to be very high, since the predicted affinities of three test compounds agree with the experimentally determined affinities obtained subsequently within the experimental error of the binding data.

摘要

研究了源自经典定量构效关系(QSAR)描述符和相似性指数的三维定量构效关系(QSAR)对28种速激肽NK1受体拮抗剂N端片段活性进行合理化分析的能力。进行了两种不同类型的分析,即偏最小二乘法和多元回归,以检验每个衍生模型的稳健性。使用经典QSAR描述符得出的模型缺乏准确描述受体 - 抑制剂相互作用本质的定量和预测能力。然而,基于相似性指数使用三维QSAR描述符得出的模型既稳健又具有显著的预测性。通过对分子场相似性指数进行统计分析获得了最佳模型(n = 28,r2 = 0.846,r(cv)2 = 0.737,s = 0.987,PRESS = 7.102),这表明电子和尺寸相关性质在解释训练集的亲和力数据方面最为重要。应用于测试集的模型的整体质量和预测能力似乎非常高,因为三种测试化合物的预测亲和力与随后在结合数据的实验误差范围内获得的实验测定亲和力一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验