Suppr超能文献

无应激试验结果的神经网络预测:我们应该多久进行一次无应激试验?

Neural network prediction of nonstress test results: how often should we perform nonstress tests?

作者信息

Devoe L D, Carlton E, Prescott P

机构信息

Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta 30912, USA.

出版信息

Am J Obstet Gynecol. 1995 Oct;173(4):1128-31. doi: 10.1016/0002-9378(95)91338-6.

Abstract

OBJECTIVE

Our purpose was to predict outcomes and optimal intervals for nonstress tests of term gravid women with neural networks.

STUDY DESIGN

We studied 100 normal term patients whose 30-minute nonstress tests, performed on 5 consecutive days, were computer analyzed for the following elements: fetal heart rate baseline, variability, signal loss, accelerations (> 15 beats/min), and decelerations. The training set used 65 patients; the testing, 35 patients. Nonstress test data (days 1 to 4) were inputs; day 5 data were training patterns. Networks for each nonstress test element used Brainmaker Macintosh 1.0 (California Scientific Software, Nevada City, Calif.) trained to 0.12 tolerance. Actual fetal heart rate elements and their daily differences were compared with predictions by the networks and multiple regressions.

RESULTS

There was little difference between networks using daily or alternate-day inputs for predicting test performance on day 5; networks using test intervals > 2 days could not be trained to tolerance. Long-term fetal heart rate variation was the nonstress test element best predicted. Daily differences networks provided better prediction of all day 5 data than did actual daily values networks or multiple regression formulas.

CONCLUSIONS

Baseline long-term fetal heart rate variability seems to be the most predictable fetal heart rate element over time and should merit more consideration in overall fetal testing. Fetal heart rate elements are not easily predicted by any method for intervals longer than 2 days. Using longer test intervals might run a greater risk for unanticipated changes in nonstress test outcomes, even when fetal condition is normal.

摘要

目的

我们的目的是利用神经网络预测足月妊娠女性无应激试验的结果及最佳间隔时间。

研究设计

我们研究了100例正常足月患者,她们连续5天进行30分钟的无应激试验,并对以下要素进行计算机分析:胎心率基线、变异性、信号丢失、加速(>15次/分钟)和减速。训练集使用65例患者;测试集使用35例患者。无应激试验数据(第1至4天)作为输入;第5天的数据作为训练模式。每个无应激试验要素的网络使用Brainmaker Macintosh 1.0(加利福尼亚科学软件公司,内华达城,加利福尼亚州)训练至0.12的容差。将实际的胎心率要素及其每日差异与网络和多元回归的预测结果进行比较。

结果

使用每日或隔日输入来预测第5天试验表现的网络之间差异不大;使用>2天的测试间隔的网络无法训练至容差。长期胎心率变异性是最能被预测的无应激试验要素。与实际每日值网络或多元回归公式相比,每日差异网络能更好地预测第5天的所有数据。

结论

随着时间推移,基线长期胎心率变异性似乎是最可预测的胎心率要素,在整体胎儿检测中应得到更多考虑。对于超过2天的间隔时间,任何方法都不容易预测胎心率要素。即使胎儿状况正常,使用更长的测试间隔可能会使无应激试验结果出现意外变化的风险更大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验