Suppr超能文献

使用卷积神经网络架构区分结节和轴向血管。

Differentiation between nodules and end-on vessels using a convolution neural network architecture.

作者信息

Lin J S, Hasegawa A, Freedman M T, Mun S K

机构信息

Radiology Department, Georgetown University Medical Center, Washington, DC 20007, USA.

出版信息

J Digit Imaging. 1995 Aug;8(3):132-41. doi: 10.1007/BF03168087.

Abstract

In recent years, many computer-aided diagnosis schemes have been proposed to assist radiologists in detecting lung nodules. The research efforts have been aimed at increasing the sensitivity while decreasing the false-positive detections on digital chest radiographs. Among the problems of reducing the number of false positives, the differentiation between nodules and end-on vessels is one of the most challenging tasks performed by computer. Most investigators have used a conventional two-stage pattern recognition approach, ie, feature extraction followed by feature classification. The performance of this approach depends totally on good feature definition in the feature extraction stage. Unfortunately, suitable feature definition and corresponding extraction implementation algorithms proved to be very difficult to define and specify. A convolution neural network (CNN) architecture, trained by direct connection to the raw image is proposed to tackle the problem. The CNN, which uses locally responsive activation function, is directly and locally connected to the raw image. The performance of the CNN is evaluated in comparison to an expert radiologist. We used the receiver operating characteristics (ROC) method with area under the curve (Az) as the performance index to evaluate all the simulation results. The CNN showed superior performance (Az = 0.99) to the radiologist's (Az = 0.83). The CNN approach can potentially be applied to other applications, such as the differentiation of film defects and microcalcifications in mammography, in which the image features are difficult to define or not known a priori.

摘要

近年来,已经提出了许多计算机辅助诊断方案来协助放射科医生检测肺结节。研究工作旨在提高数字胸部X光片上的检测灵敏度,同时减少假阳性检测。在减少假阳性数量的问题中,区分结节和轴向血管是计算机执行的最具挑战性的任务之一。大多数研究人员使用传统的两阶段模式识别方法,即特征提取后进行特征分类。这种方法的性能完全取决于特征提取阶段的良好特征定义。不幸的是,合适的特征定义和相应的提取实现算法被证明很难定义和指定。本文提出一种通过直接连接到原始图像进行训练的卷积神经网络(CNN)架构来解决这个问题。该CNN使用局部响应激活函数,直接且局部地连接到原始图像。将CNN的性能与专家放射科医生的性能进行比较评估。我们使用曲线下面积(Az)的接收器操作特性(ROC)方法作为性能指标来评估所有模拟结果。CNN表现出优于放射科医生(Az = 0.83)的性能(Az = 0.99)。CNN方法有可能应用于其他应用,例如乳腺X线摄影中胶片缺陷和微钙化的区分,其中图像特征难以定义或事先未知。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验