Suppr超能文献

使用人工神经网络、判别分析和基于规则的方案减少胸部X光片中肺结节计算机检测中的假阳性。

Reduction of false positives in computerized detection of lung nodules in chest radiographs using artificial neural networks, discriminant analysis, and a rule-based scheme.

作者信息

Wu Y C, Doi K, Giger M L, Metz C E, Zhang W

机构信息

Kurt Rossmann Laboratories for Radiologic Image Research, Department of Radiology, University of Chicago, IL.

出版信息

J Digit Imaging. 1994 Nov;7(4):196-207. doi: 10.1007/BF03168540.

Abstract

A computer-aided diagnosis (CAD) scheme is being developed to identify image regions considered suspicious for lung nodules in chest radiographs to assist radiologists in making correct diagnoses. Automated classifiers--an artificial neural network, discriminant analysis, and a rule-based scheme--are used to reduce the number of false-positive detections of the CAD scheme. The CAD scheme first detects nodule candidates from chest radiographs based on a difference image technique. Nine image features characterizing nodules are extracted automatically for each of the nodule candidates. The extracted image features are then used as input data to the classifiers for distinguishing actual nodules from the false-positive detections. The performances of the classifiers are evaluated by receiver-operating characteristic analysis. On the basis of the database of 30 normal and 30 abnormal chest images, the neural network achieves an AZ value (area under the receiver-operating-characteristic curve) of 0.79 in detecting lung nodules, as tested by the round-robin method. The neural network, after being trained with a training database, is able to eliminate more than 83% of the false-positive detections reported by the CAD scheme. Moreover, the combination of the trained neural network and a rule-based scheme eliminates 96% of the false-positive detections of the CAD scheme.

摘要

一种计算机辅助诊断(CAD)方案正在研发中,用于识别胸部X光片中被认为可疑的肺结节图像区域,以协助放射科医生做出正确诊断。使用自动分类器——人工神经网络、判别分析和基于规则的方案——来减少CAD方案的假阳性检测数量。CAD方案首先基于差分图像技术从胸部X光片中检测结节候选区域。为每个结节候选区域自动提取九个表征结节的图像特征。然后将提取的图像特征用作分类器的输入数据,以区分实际结节和假阳性检测。通过接收者操作特征分析来评估分类器的性能。在30张正常胸部图像和30张异常胸部图像的数据库基础上,通过循环法测试,神经网络在检测肺结节时的AZ值(接收者操作特征曲线下的面积)为0.79。经过训练数据库训练后的神经网络能够消除CAD方案报告的超过83%的假阳性检测。此外,经过训练的神经网络与基于规则的方案相结合,可消除CAD方案96%的假阳性检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验