Morlet D, Couderc J P, Touboul P, Rubel P
INSERM U 121, Hôpital Cardiologique, Lyon, France.
Int J Biomed Comput. 1995 Jun;39(3):311-25. doi: 10.1016/0020-7101(95)01113-s.
Wavelet analysis provides a fruitful alternative to standard techniques for the detection of fractionated potentials in signal averaged high-resolution (SA-HR) ECGs. In this study, an attempt is made to optimize the discrimination of post infarction patients prone to ventricular tachycardia (VT), using wavelet analysis. Optimization is based on the choice of the ECG leads or lead combinations to be analyzed, and on the analyzing wavelet to be computed. A set of 40 post-infarction patients (20 patients with VT and 20 patients without any arrhythmia) is analyzed. Individual leads and lead combinations of the SA-HR ECGs are processed using a multiparametric algorithm, based on coherent detection of aligned local maxima of the wavelet transform. Seven basic wavelets are tested: the Morlet's wavelet, and the six first derivatives of a Gaussian function. The first derivative of a Gaussian function provides poor results, and is discarded. All other wavelets prove to perform equivalent classification. A vector magnitude computed from the wavelet transforms of the three SA-HR ECGs achieves better results than individual leads. An optimized risk stratification algorithm leads to 90% sensitivity and 100% specificity in the 40 patients learning set.
小波分析为检测信号平均高分辨率(SA-HR)心电图中的碎裂电位提供了一种卓有成效的替代标准技术的方法。在本研究中,尝试使用小波分析来优化对易于发生室性心动过速(VT)的心肌梗死后患者的鉴别。优化基于待分析的心电图导联或导联组合的选择,以及待计算的分析小波。分析了一组40例心肌梗死后患者(20例有室性心动过速患者和20例无任何心律失常患者)。基于小波变换对齐局部最大值的相干检测,使用多参数算法处理SA-HR心电图的各个导联和导联组合。测试了七种基本小波:莫雷小波和高斯函数的六个一阶导数。高斯函数的一阶导数效果不佳,被舍弃。所有其他小波都证明具有等效的分类性能。从三个SA-HR心电图的小波变换计算得到的矢量大小比单个导联取得了更好的结果。一种优化的风险分层算法在40例患者的学习集中实现了90%的灵敏度和100%的特异性。