Suppr超能文献

Bileaflet mechanical valve sound analysis using a continuous wavelet transform.

作者信息

Sugiki Hiroshi, Shiiya Norihiko, Murashita Toshifumi, Yasuda Keishu

机构信息

Department of Cardiovascular Surgery, Postgraduate School of Hokkaido University School of Medicine, North-14, West-4, Kita-ku, Sapporo, 060-8648, Japan.

出版信息

J Artif Organs. 2006;9(1):42-9. doi: 10.1007/s10047-005-0319-7.

Abstract

Bileaflet mechanical valve closing sounds have splits, the duration of which is not constant in normally functioning valves. However, no reports have discussed the influences of valve malfunction on the split interval, neither have any studies discussed the fact that mechanical valve closing sound signals must be analyzed using a time-frequency analysis because they are nonstationary signals. The continuous wavelet transform (CWT), a time-frequency analyzing method using mother wavelets modified by scale numbers, was selected in this study for analyzing bileaflet valve closing sounds because it is easy to understand and has no limitations such as the cross-terms in the Wigner-Ville distribution or the tradeoff between time and frequency resolutions of the short-time Fourier transform. This study compares the properties of the mother wavelets of various CWTs and selects one that is suitable for detection of the clear split in bileaflet mechanical valve closing sound signals. This article also establishes a standard frequency analyzing system for bileaflet mechanical valve sounds. A preliminary study with chirp Doppler signals for comparing the frequency properties of the mother wavelets of various CWTs suggested that Ishikawa's modified Morlet CWT has better time and frequency resolution at the highest frequency scale. Morlet/power CWT analysis of normal in vivo bileaflet valve closing sounds of the ST. Jude Medical (SJM), ATS, and Carbomedics (CM) valves demonstrated clear splits of very short interval at the highest level of frequency. Detection of the disappearance of the split by using this analytical method may be the key to identifying bileaflet mechanical valve malfunction in outpatient departments.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验