Morlet D, Peyrin F, Desseigne P, Touboul P, Rubel P
INSERM U 121, Lyon, France.
J Electrocardiol. 1993 Oct;26(4):311-20. doi: 10.1016/0022-0736(93)90052-f.
The authors present an original method for the discrimination of patients prone to ventricular tachycardia. The wavelet transform, which is a new time-scale technique suitable for transient signal detection, was applied to bipolar unfiltered X, Y, Z signal-averaged electrocardiograms in 20 postinfarction patients with sustained ventricular tachycardia, in 20 myocardial infarction patients without ventricular tachycardia, and in 10 healthy subjects. An improved automated algorithm for the detection and localization of sharp variations of the signal, based on coherent detection of the local maxima of the wavelet transform, was developed. A risk stratification method, based on the detection of at least one singularity at or after a point defined with reference to the QRS onset, was assessed. The optimum cutoff point, found 98 ms after the onset of QRS, provides a specificity of 90% and a sensitivity of 85%. The authors conclude that wavelet analysis makes it possible, in this group of patients, to discriminate those with ventricular tachycardia. It yields better results than those obtained from the conventional time-domain approach.
作者提出了一种鉴别易发生室性心动过速患者的原创方法。小波变换是一种适用于瞬态信号检测的新的时间尺度技术,应用于20例患有持续性室性心动过速的心肌梗死后患者、20例无室性心动过速的心肌梗死患者以及10名健康受试者的双极未滤波X、Y、Z信号平均心电图。基于小波变换局部最大值的相干检测,开发了一种改进的自动算法,用于检测和定位信号的尖锐变化。评估了一种基于在参照QRS波起始定义的点或之后检测到至少一个奇点的风险分层方法。在QRS波起始后98毫秒处找到的最佳截止点,特异性为90%,灵敏度为85%。作者得出结论,在这组患者中,小波分析能够鉴别出患有室性心动过速的患者。其结果比传统时域方法得到的结果更好。