Suppr超能文献

Use of a novel method for determination of partition coefficients to compare the effect of local anesthetics on membrane structure.

作者信息

de Paula E, Schreier S

机构信息

Department of Biochemistry, Universidade de São Paulo, Brazil.

出版信息

Biochim Biophys Acta. 1995 Nov 22;1240(1):25-33. doi: 10.1016/0005-2736(95)00155-6.

Abstract

A new, simple procedure for the determination of partition coefficients (P) was developed based on spectral effects caused upon addition of solutes to spin labeled model lipid membranes, and on the knowledge of their water solubility. Values of P were determined for nine local anesthetics (LA), amino-esters and amino-amides. The results were in good agreement with those found by phase separation and by a more complex, previously reported, methodology (Lissi et al. (1990) Biochim. Biophys. Acta 1021, 46-50) applied to either EPR or fluorescence spectra of probes incorporated in the bilayers. Both the present and the previously reported procedures make use of effects on membrane structure evaluated by spectroscopic techniques and offer the advantage of not requiring phase separation. The spectral effects, indicative of a decrease in bilayer organization increased with LA concentration, reaching a maximum at the drug water solubility, indicating that partitioning in the membrane is limited by saturation of the aqueous phase. A thermodynamic analysis of the partition data according to Hill (Hill, M.W. (1974) Biochim. Biophys. Acta 356, 117-124) showed that the LAs did not display ideal behavior. Knowledge of the partition coefficients allowed a comparison between effects at the same drug concentration in the membrane. Within a given family (esters, acyclic amides, cyclic amides) no clear proportionality was observed between effect and LA hydrophobicity, as reflected in the partition coefficient. Rather, the membrane perturbing ability is a result of steric effects originating in the mismatch between anesthetic and phospholipid shapes.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验