Suppr超能文献

Pineal nitric oxide synthase: characteristics, adrenergic regulation and function.

作者信息

Lin A M, Schaad N C, Schulz P E, Coon S L, Klein D C

机构信息

Section on Neuroendocrinology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892.

出版信息

Brain Res. 1994 Jul 18;651(1-2):160-8. doi: 10.1016/0006-8993(94)90693-9.

Abstract

Available studies indicate that the adrenergic stimulation of pineal cyclic GMP production involves stimulation of guanylyl cyclase activity by nitric oxide (NO) derived from arginine. This line of investigation was extended in the present study. Using a highly sensitive microassay, it was found that pineal NO synthase activity is present at levels approximately 30% of those in the cerebellum, that approximately 95% of enzyme activity is cytoplasmic, that the enzyme is Ca2+/calmodulin-dependent and that enzyme activity is inhibited by the arginine analog NG-nitro-L-arginine methyl ester (L-NAME). Norepinephrine treatment of intact glands in culture increased [3H]citrulline formation from [3H]arginine. This treatment also increased the formation of an NO-like compound, indicating that NO synthase activity in the intact gland is elevated by adrenergic stimulation. Studies on the effects of inhibition of NO synthase activity indicated that treatments known to inhibit NO synthase activity and the adrenergic stimulation of cyclic GMP accumulation did not inhibit adrenergic stimulation of pineal cyclic AMP, N-acetyltransferase activity or melatonin production. These observations support the hypothesis that NE stimulation of pineal cyclic GMP accumulation involves stimulation of a Ca2+/calmodulin-sensitive form of NO synthase, resulting in enhanced accumulation of NO; and, that although NO appears to play a role in the adrenergic stimulation of pineal cyclic GMP accumulation, it does not appear to play a critical role in the adrenergic stimulation of cyclic AMP, N-acetyltransferase activity or melatonin production.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验