Mills L R, Niesen C E, So A P, Carlen P L, Spigelman I, Jones O T
Playfair Neuroscience Unit, Toronto Hospital Research Institute, Toronto Western Hospital, Ontario, Canada.
J Neurosci. 1994 Nov;14(11 Pt 2):6815-24. doi: 10.1523/JNEUROSCI.14-11-06815.1994.
In the nervous system the influx of Ca2+ orchestrates multiple biochemical and electrical events essential for development and function. A major route for Ca2+ entry is through voltage-dependent calcium channels (VDCCs). It is becoming increasingly clear that the precise contribution VDCCs make to neuronal function depends not only upon their specific electrophysiological properties but also on their distribution over the nerve cell surface. One location where the presence of VDCCs may be critical is the dendritic spine, a structure known to be the major site of excitatory synaptic input. On spines, VDCCs are hypothesized to play an essential role in signal processing, learning, and memory. However, direct evidence for the presence of VDCCs on spines is lacking. Attempts to examine the distribution of VDCCs, or indeed any other components, on spines have been hampered since the size of many spines is close to the limits of resolution of conventional light microscopy. Using a new, biologically active, fluorescein conjugate of omega-conotoxin (Fl-omega-CgTx), a selective blocker of N-type VDCCs, and confocal microscopy, we have mapped the distributions of N-type VDCCs on live CA1 neurons in rat hippocampal slices. VDCCs were found on somata, throughout the dendritic arbor, and on dendritic spines in all hippocampal subfields. A comparison of three-dimensional reconstructions of structures labeled by Fl-omega-CgTx with those outlined by 1,1-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine (Dil) or Lucifer yellow confirmed the presence of N-type VDCCs on dendritic spines. However, spine frequency on dendrites labeled with Fl-omega-CgTx was much lower than the spine frequency on dendrites labeled with Lucifer yellow or Dil, suggesting that some spines lack N-type VDCCs. These results offer the first direct evidence for the localization of any voltage-dependent channel on dendritic spines. The presence of N-type VDCCs on dendrites and their spines argues that these channels may participate in the generation of active Ca2+ conductances in distal dendrites, and is consistent with a role for spines as specialized compartments for concentrating Ca2+.
在神经系统中,钙离子的内流协调着发育和功能所必需的多种生化和电活动。钙离子进入的主要途径是通过电压依赖性钙通道(VDCCs)。越来越清楚的是,VDCCs对神经元功能的确切贡献不仅取决于它们特定的电生理特性,还取决于它们在神经细胞表面的分布。VDCCs存在可能至关重要的一个位置是树突棘,这是一个已知为兴奋性突触输入主要部位的结构。在树突棘上,VDCCs被认为在信号处理、学习和记忆中起重要作用。然而,缺乏树突棘上存在VDCCs的直接证据。由于许多树突棘的大小接近传统光学显微镜分辨率的极限,因此研究VDCCs或实际上任何其他成分在树突棘上的分布的尝试受到了阻碍。使用一种新的、具有生物活性的ω-芋螺毒素荧光素共轭物(Fl-ω-CgTx),一种N型VDCCs的选择性阻滞剂,以及共聚焦显微镜,我们绘制了大鼠海马切片中活CA1神经元上N型VDCCs的分布图。在所有海马亚区的胞体、整个树突分支以及树突棘上都发现了VDCCs。将用Fl-ω-CgTx标记的结构的三维重建与用1,1-二辛基-3,3,3',3'-四甲基吲哚碳菁(Dil)或荧光素黄勾勒出的结构进行比较,证实了树突棘上存在N型VDCCs。然而,用Fl-ω-CgTx标记的树突上的树突棘频率远低于用荧光素黄或Dil标记的树突上的树突棘频率,这表明一些树突棘缺乏N型VDCCs。这些结果为任何电压依赖性通道在树突棘上的定位提供了首个直接证据。树突及其树突棘上存在N型VDCCs表明这些通道可能参与远端树突中活性钙离子电导的产生,并且与树突棘作为浓缩钙离子的特殊隔室的作用一致。