Suppr超能文献

Calmodulin controls neuronal nitric-oxide synthase by a dual mechanism. Activation of intra- and interdomain electron transfer.

作者信息

Abu-Soud H M, Yoho L L, Stuehr D J

机构信息

Department of Immunology, Cleveland Clinic, Ohio 44195.

出版信息

J Biol Chem. 1994 Dec 23;269(51):32047-50.

PMID:7528206
Abstract

In neuronal nitric-oxide synthase (NOS), electron transfer proceeds across domains in a linear sequence from NADPH to flavins to heme, with calmodulin (CaM) triggering the interdomain electron transfer to the heme (Abu-Soud, H. M., and Stuehr, D. J. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 10769-10772). Here, we utilized a neuronal NOS devoid of its bound heme and tetrahydrobiopterin (apo-NOS) to examine whether interdomain electron transfer is responsible for CaM's activation of NO synthesis, substrate-independent NADPH oxidation, and cytochrome c and ferricyanide reduction. Of the four activities, two (cytochrome c and ferricyanide reduction) were similarly stimulated by CaM in apo-NOS when compared with native NOS, indicating that activation occurs by a mechanism not involving flavin-to-heme electron transfer. Further analysis showed that CaM increased the rate of electron transfer from NADPH into the flavin centers by a factor of 20, revealing a direct activation of the NOS reductase domain by CaM. In contrast, CaM's activation of NO synthesis and substrate-independent NADPH oxidation appeared to involve flavin-to-heme electron transfer because these reactions were not activated in apo-NOS and were blocked in native NOS by agents that prevent heme iron reduction. Thus, CaM activates neuronal NOS at two points in the electron transfer sequence: electron transfer into the flavins and interdomain electron transfer between the flavins and heme. Activation at each point is associated with an up-regulation of domain-specific catalytic functions. The dual regulation by CaM is unique and represents a new means by which electron transfer can be controlled in a metalloflavoprotein.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验