Kienker P K, Lear J D
DuPont Merck Pharmaceutical Co., Wilmington, Delaware 19880, USA.
Biophys J. 1995 Apr;68(4):1347-58. doi: 10.1016/S0006-3495(95)80307-3.
Charge selectivity in ion channel proteins is not fully understood. We have studied charge selectivity in a simple model system without charged groups, in which an amphiphilic helical peptide, Ac-(Leu-Ser-Ser-Leu-Leu-Ser-Leu)3-CONH2, forms ion channels across an uncharged phospholipid membrane. We find these channels to conduct both K+ and Cl-, with a permeability ratio (based on reversal potentials) that depends on the direction of the KCl concentration gradient across the membrane. The channel shows high selectivity for K+ when [KCl] is lowered on the side of the membrane that is held at a positive potential (the putative C-terminal side), but only modest K+ selectivity when [KCl] is lowered on the opposite side (the putative N-terminal side). Neither a simple Nernst-Planck electrodiffusion model including screening of the helix dipole potential, nor a multi-ion, state transition model allowing simultaneous cation and anion occupancy of the channel can satisfactorily fit the current-voltage curves over the full range of experimental conditions. However, the C-side/N-side dilution asymmetry in reversal potentials can be simulated with either type of model.
离子通道蛋白中的电荷选择性尚未完全被理解。我们在一个没有带电基团的简单模型系统中研究了电荷选择性,在该系统中,两亲性螺旋肽Ac-(Leu-Ser-Ser-Leu-Leu-Ser-Leu)3-CONH2跨无电荷的磷脂膜形成离子通道。我们发现这些通道能传导K+和Cl-,其渗透率比(基于反转电位)取决于跨膜KCl浓度梯度的方向。当膜保持正电位一侧(假定的C端侧)的[KCl]降低时,该通道对K+表现出高选择性,但当相反一侧(假定的N端侧)的[KCl]降低时,对K+的选择性仅适中。包括螺旋偶极电位屏蔽的简单能斯特-普朗克电扩散模型,以及允许阳离子和阴离子同时占据通道的多离子、状态转换模型,都不能在整个实验条件范围内令人满意地拟合电流-电压曲线。然而,反转电位中的C侧/N侧稀释不对称性可以用这两种模型中的任何一种来模拟。