Suppr超能文献

Distribution of human i-NANC bronchodilator and nitric oxide-immunoreactive nerves.

作者信息

Ward J K, Barnes P J, Springall D R, Abelli L, Tadjkarimi S, Yacoub M H, Polak J M, Belvisi M G

机构信息

Department of Thoracic Medicine, National Heart & Lung Institute, London, United Kingdom.

出版信息

Am J Respir Cell Mol Biol. 1995 Aug;13(2):175-84. doi: 10.1165/ajrcmb.13.2.7542897.

Abstract

We compared inhibitory nonadrenergic noncholinergic (i-NANC) neural relaxations, evoked by electrical field stimulation (EFS), at three levels (main [MA], proximal [PA], and distal [DA] airways) of isolated human airways and correlated these with nitric oxide synthase-immunoreactive (NOS-IR) nerves, using antiserum raised to rat cerebellar NOS. Maximal relaxations to papaverine (100 microM) were reduced in PA and DA (MA: 1,712 +/- 219 mg, n = 12; DA: 862 +/- 69 mg, n = 5, P < 0.05 versus MA); hence, subsequent relaxations were expressed as a percentage of the papaverine maximum. EFS elicited frequency-dependent relaxations that were largest in MA and reduced in PA and DA, especially at high stimulation frequencies (10 Hz EFS: MA: 51.6 +/- 3.7%, n = 12; PA: 30.5 +/- 6.0%, n = 6, P < 0.01 versus MA; DA: 17.8 +/- 3.6%, n = 5, P < 0.001 versus MA). The NOS inhibitor L-NG-nitroarginine methyl ester (L-NAME) (100 microM) and tetrodotoxin (3 microM) significantly inhibited i-NANC responses at all frequencies, leaving an L-NAME-resistant non-neural relaxation at frequencies > 5 Hz which was reduced in PA and DA. Cumulative concentration-response studies to sodium nitroprusside (1 nM to 0.1 mM) and the NO donor 3-morpholinosydnonimine (1 nM to 1 mM) were not significantly different in PA and DA, suggesting impaired relaxation is not caused by impaired guanylyl cyclase activity. Total nerve density, shown by protein gene product 9.5 staining, was not significantly different in PA and DA; however, NOS-IR nerve density was reduced in PA and DA (NOS-IR [intercepts/mm2]: MA: 705 +/- 98, n = 6; DA: 284 +/- 32, n = 6, P < 0.01 versus MA). These studies demonstrate that i NANC neural relaxations are reduced in DA, apparently due to a decrease in the density of nitrergic innervation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验