Suppr超能文献

豚鼠体内非肾上腺素能非胆碱能神经支气管收缩的调节:一氧化氮、血管活性肠肽和可溶性鸟苷酸环化酶的作用

Regulation of NANC neural bronchoconstriction in vivo in the guinea-pig: involvement of nitric oxide, vasoactive intestinal peptide and soluble guanylyl cyclase.

作者信息

Lei Y H, Barnes P J, Rogers D F

机构信息

Department of Thoracic Medicine, National Heart & Lung Institute, London.

出版信息

Br J Pharmacol. 1993 Jan;108(1):228-35. doi: 10.1111/j.1476-5381.1993.tb13467.x.

Abstract
  1. We investigated the effect of the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) and the peptidase alpha-chymotrypsin on non-adrenergic, non-cholinergic (NANC neural) bronchoconstriction induced by electrical stimulation of the vagus nerves and by capsaicin in anaesthetized guinea-pigs in vivo using pulmonary insufflation pressure (PIP) as an index of bronchial tone. We also investigated the contribution of soluble guanylyl cyclase (SGC) to NANC neural relaxant mechanisms. 2. In the presence of atropine and propranolol, electrical stimulation of the vagus nerves induced a frequency-dependent increase in PIP above baseline of 67% at 2.5 Hz, of 128% at 5 Hz and of 230% at 10 Hz. L-NAME (1-50 mg kg-1, i.v.), at doses inducing increases in systemic blood pressure, dose-relatedly potentiated NANC bronchoconstriction. At 10 mg kg-1 i.v., L-NAME significantly (P < 0.05) potentiated NANC bronchoconstriction by a further 106% at 2.5 Hz and a further 147% at 5 Hz but did not potentiate the increase in PIP at 10 Hz. L-NAME did not induce bronchoconstriction in sham-stimulated control animals. D-NAME did not potentiate NANC bronchoconstriction. Raising systemic blood pressure with phenylephrine did not potentiate vagally-induced bronchoconstriction (2.5 Hz). 3. The NO precursor L-arginine, but not D-arginine, (100 mg kg-1, i.v.) significantly reversed the potentiation by L-NAME of NANC bronchoconstriction. L-Arginine alone significantly inhibited neurogenic bronchoconstriction at 10 Hz (by 74%); the inhibition of 25% at 2.5 Hz was not significant. 4. L-NAME did not significantly affect the increases in PIP induced by intravenous substance P. neurokinin A (NKA) or capsaicin. 5. The inhibitor of SGC, methylene blue (10 mg kg', i.v.) potentiated (by 110-140%) NANC neural bronchoconstriction induced by lower frequencies of nerve stimulation and reversed the reduction in PIP induced by the SGC activator, sodium nitroprusside (SNP, 1.05 mg kg- 1, i.v.). SNP significantly (P <0.05) reduced by 65% the bronchoconstriction induced by nerve stimulation at 10 Hz. Methylene blue did not effect baseline PIP in sham-stimulated controls. The airway effects of methylene blue and SNP were not associated with their cardiovascular effects. 6. a-Chymotrypsin (2 units kg-', i.v.) significantly potentiated vagally-induced bronchoconstriction by a further 63% at 2.5 Hz, by a further 95.6% at 5 Hz but did not potentiate the increase in PIP at 10 Hz. alpha-Chymotrypsin also potentiated (by 116%) capsaicin-induced bronchoconstriction. Vasoactive intestinal peptide (VIP, 10 ig kg-' i.v. infused over min) significantly reduced by 70% the increase in PIP induced by NKA (0.1 .Lmol kg-' i.v., infused over 30 s). 7. The combination of a-chymotrypsin (2 units kg-', i.v.) and L-NAME (5 mg kg-', i.v.) significantly potentiated NANC bronchoconstriction by a further 304% at 2.5 Hz, an increase in PIP which was greater than that induced by either a-chymotrypsin or L-NAME alone (P <0.05). 8. We conclude that endogenous NO and a bronchodilator peptide, possibly VIP, released in association with nerve stimulation, as well as activation of soluble guanylyl cyclase, regulate the magnitude of NANC neurogenic bronchoconstriction in guinea-pigs in vivo.
摘要
  1. 我们在麻醉的豚鼠体内,以肺内压(PIP)作为支气管张力指标,研究了一氧化氮(NO)合酶抑制剂NG-硝基-L-精氨酸甲酯(L-NAME)和肽酶α-糜蛋白酶对迷走神经电刺激及辣椒素诱导的非肾上腺素能、非胆碱能(NANC神经)支气管收缩的影响。我们还研究了可溶性鸟苷酸环化酶(SGC)在NANC神经舒张机制中的作用。2. 在阿托品和普萘洛尔存在的情况下,迷走神经电刺激使PIP在2.5 Hz时比基线升高67%,在5 Hz时升高128%,在10 Hz时升高230%,呈频率依赖性。静脉注射L-NAME(1 - 50 mg·kg⁻¹),在引起全身血压升高的剂量下,剂量依赖性地增强NANC支气管收缩。静脉注射10 mg·kg⁻¹ L-NAME时,在2.5 Hz时使NANC支气管收缩显著(P < 0.05)进一步增强106%,在5 Hz时进一步增强147%,但在10 Hz时未增强PIP的升高。L-NAME在假刺激对照动物中未诱导支气管收缩。D-NAME未增强NANC支气管收缩。用去氧肾上腺素升高全身血压未增强迷走神经诱导的支气管收缩(2.5 Hz)。3. NO前体L-精氨酸(100 mg·kg⁻¹,静脉注射)而非D-精氨酸,显著逆转L-NAME对NANC支气管收缩的增强作用。单独使用L-精氨酸在10 Hz时显著抑制神经源性支气管收缩(74%);在2.5 Hz时25%的抑制作用不显著。4. L-NAME对静脉注射P物质、神经激肽A(NKA)或辣椒素诱导的PIP升高无显著影响。5. SGC抑制剂亚甲蓝(10 mg·kg⁻¹,静脉注射)增强(110 - 140%)较低频率神经刺激诱导的NANC神经支气管收缩,并逆转SGC激活剂硝普钠(SNP,1.05 mg·kg⁻¹,静脉注射)诱导的PIP降低。SNP显著(P < 0.05)使10 Hz神经刺激诱导的支气管收缩降低65%。亚甲蓝对假刺激对照中的基线PIP无影响。亚甲蓝和SNP的气道作用与其心血管作用无关。6. α-糜蛋白酶(2单位·kg⁻¹,静脉注射)在2.5 Hz时使迷走神经诱导的支气管收缩进一步显著增强63%,在5 Hz时进一步增强95.6%,但在10 Hz时未增强PIP的升高。α-糜蛋白酶也增强(116%)辣椒素诱导的支气管收缩。血管活性肠肽(VIP,10 μg·kg⁻¹静脉注射,持续1分钟)显著使NKA(0.1 μmol·kg⁻¹静脉注射,持续30秒)诱导的PIP升高降低70%。7. α-糜蛋白酶(2单位·kg⁻¹,静脉注射)和L-NAME(5 mg·kg⁻¹,静脉注射)联合使用在2.5 Hz时使NANC支气管收缩显著进一步增强304%,PIP的升高大于单独使用α-糜蛋白酶或L-NAME时(P < 0.05)。8. 我们得出结论,内源性NO和与神经刺激相关释放的一种支气管舒张肽(可能是VIP)以及可溶性鸟苷酸环化酶的激活,在体内调节豚鼠NANC神经源性支气管收缩的程度。

相似文献

3
Evidence for the involvement of cGMP in neural bronchodilator responses in humal trachea.
J Physiol. 1995 Mar 1;483 ( Pt 2)(Pt 2):525-36. doi: 10.1113/jphysiol.1995.sp020603.
4
Study of NO and VIP as non-adrenergic non-cholinergic neurotransmitters in the pig gastric fundus.
Br J Pharmacol. 1995 Oct;116(3):2017-26. doi: 10.1111/j.1476-5381.1995.tb16406.x.
7
Effect of an inhibitor of nitric oxide synthase on neural relaxation of human bronchi.
Am J Physiol. 1993 May;264(5 Pt 1):L425-30. doi: 10.1152/ajplung.1993.264.5.L425.
9
Regional difference in the distribution of L-NAME-sensitive and -insensitive NANC relaxations in cat airway.
J Physiol. 1995 Nov 1;488 ( Pt 3)(Pt 3):709-20. doi: 10.1113/jphysiol.1995.sp021002.
10
Nitric oxide is involved in non-adrenergic, non-cholinergic inhibitory neurotransmission in rat duodenum.
J Auton Pharmacol. 1995 Apr;15(2):65-71. doi: 10.1111/j.1474-8673.1995.tb00292.x.

引用本文的文献

1
Low voltage vagal nerve stimulation reduces bronchoconstriction in guinea pigs through catecholamine release.
Neuromodulation. 2012 Nov-Dec;15(6):527-36. doi: 10.1111/j.1525-1403.2012.00454.x. Epub 2012 May 2.
2
Multiple roles of nitric oxide in the airways.
Thorax. 2003 Feb;58(2):175-82. doi: 10.1136/thorax.58.2.175.
3
Apocynin and 1400 W prevents airway hyperresponsiveness during allergic reactions in mice.
Br J Pharmacol. 2001 Sep;134(2):434-40. doi: 10.1038/sj.bjp.0704235.
4
Nitric oxide inhibition of basal and neurogenic mucus secretion in ferret trachea in vitro.
Br J Pharmacol. 1996 Jun;118(4):998-1002. doi: 10.1111/j.1476-5381.1996.tb15498.x.
5
Nitric oxide and lung disease.
Thorax. 1993 Oct;48(10):1034-43. doi: 10.1136/thx.48.10.1034.
6
Evidence for reduction of bradykinin-induced bronchoconstriction in guinea-pigs by release of nitric oxide.
Br J Pharmacol. 1994 Dec;113(4):1147-52. doi: 10.1111/j.1476-5381.1994.tb17117.x.
7
Endogenous nitric oxide modulation of potassium-induced changes in guinea-pig airway tone.
Br J Pharmacol. 1995 Aug;115(7):1194-8. doi: 10.1111/j.1476-5381.1995.tb15024.x.
8
Suppression of VEGF-induced angiogenesis by the protein tyrosine kinase inhibitor, lavendustin A.
Br J Pharmacol. 1995 Jan;114(2):262-8. doi: 10.1111/j.1476-5381.1995.tb13221.x.

本文引用的文献

1
A nonadrenergic vagal inhibitory pathway to feline airways.
Science. 1980 Apr 11;208(4440):185-8. doi: 10.1126/science.7361114.
2
In vivo demonstration of nonadrenergic inhibitory innervation of the guinea pig trachea.
J Clin Invest. 1980 Feb;65(2):314-20. doi: 10.1172/JCI109674.
3
Bronchodilatation: noncholinergic, nonadrenergic mediation demonstrated in vivo in the cat.
Science. 1980 Feb 15;207(4432):791-2. doi: 10.1126/science.7352292.
4
Cholinergic and nonadrenergic mechanisms in human and guinea pig airways.
J Appl Physiol Respir Environ Exerc Physiol. 1984 Apr;56(4):958-65. doi: 10.1152/jappl.1984.56.4.958.
8
Innervation of airway smooth muscle in the baboon: evidence for a nonadrenergic inhibitory system.
J Appl Physiol Respir Environ Exerc Physiol. 1980 Jun;48(6):947-56. doi: 10.1152/jappl.1980.48.6.947.
9
Pharmacological characterization of the autonomous innervation of the guinea pig tracheobronchial smooth muscle.
Acta Pharmacol Toxicol (Copenh). 1981 Aug;49(2):150-7. doi: 10.1111/j.1600-0773.1981.tb00884.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验