Suppr超能文献

一种用于搜索最优和次优RNA二级结构的遗传算法。

A genetic algorithm to search for optimal and suboptimal RNA secondary structures.

作者信息

Benedetti G, Morosetti S

机构信息

Dipartimento di Chimica, Università di Roma La Sapienza, Italy.

出版信息

Biophys Chem. 1995 Aug;55(3):253-9. doi: 10.1016/0301-4622(94)00130-c.

Abstract

Genetic algorithms are a search method used in solving problems by selection, recombination and mutation of tentative solutions, until the better ones are achieved. They are very efficient when the 'building block' hypothesis is effective for the solutions, which means that a better solution can be obtained by assembling short 'motifs' or 'schemata' that can be retrieved in some other worse solutions. The additive nature of the secondary structure free energy rules suggests the validity of this hypothesis, and therefore the likely power of a genetic algorithm approach to search for RNA secondary structures. We describe in detail an original genetic algorithm specific for this problem. The sharing function used to obtain differentiated solutions is also described. It results in a greater effectiveness of the algorithm in retrieving a large number of suboptimal RNA foldings besides the optimal one. RNA sequences of different length are used to test the method. The PSTV viroid sequence has been studied.

摘要

遗传算法是一种搜索方法,通过对试探性解决方案进行选择、重组和变异来解决问题,直到找到更好的解决方案。当“积木块”假说是有效的解决方案时,它们非常有效,这意味着可以通过组装可以在其他一些较差的解决方案中检索到的短“基序”或“模式”来获得更好的解决方案。二级结构自由能规则的加和性表明了这一假设的有效性,因此遗传算法方法可能有能力搜索RNA二级结构。我们详细描述了针对此问题的一种原始遗传算法。还描述了用于获得差异化解决方案的共享函数。除了最优解之外,它还能使算法在检索大量次优RNA折叠方面更有效。使用不同长度的RNA序列来测试该方法。已经研究了马铃薯纺锤块茎类病毒序列。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验