Suppr超能文献

A study of the effects of noradrenaline in the rat olfactory bulb using evoked field potential response.

作者信息

Mouly A M, Elaagouby A, Ravel N

机构信息

Laboratoire de Physiologie Neurosensorielle, Université Claude Bernard Lyon-1, Centre National de la Recherche Scientifique URA 180, Villeurbanne, France.

出版信息

Brain Res. 1995 May 29;681(1-2):47-57. doi: 10.1016/0006-8993(95)00280-4.

Abstract

In the rat, the main olfactory bulb receives a strong noradrenergic (NA) input from the locus coeruleus which is critical for different types of olfactory learning. However, the resulting effect of NA modulation on on the olfactory bulb electrical activity and its pharmacology are not well understood. In this study, we investigated the action of NA on the bulbar neuronal population using evoked field potentials (EFP) elicited antidromically in the olfactory bulb of anesthetized rats, by stimulation of the lateral olfactory tract (LOT). EFPs in response to single and paired-pulse stimulation of the LOT were collected before, during and until 2 h after a 10 min perfusion of pharmacological agents through a push-pull cannula. Four concentrations of NA were tested ranging from 10(-5) M to 10(-2) M. NA induced a reversible dose-dependent effect. The major effect was observed at 10(-3) M. It consisted of an increase in Component 2 amplitude (depolarization of granules cell dendrites) and a decrease in Component 3 amplitude (depolarization of granule cell bodies). In parallel, paired-pulse inhibition of mitral cells by granule cells was increased. The alpha 1 agonist phenylephrine (10(-3) M) mimicked most of the effects of NA whereas the alpha 1 antagonist prazosin (10(-3) M) blocked its main action. Isoproterenol (beta agonist, 10(-3) M) and clonidine (alpha 2 agonist, 10(-3) M) could not reproduce the effects of NA. Thus mainly through the activation of alpha 1 receptors, NA enhances synaptic activation of granule cells and increases feed-back inhibition of mitral cells. Consequences of such effects in the context of learning and memory are discussed.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验