Suppr超能文献

N-acetylcysteine administration and loaded breathing.

作者信息

Supinski G S, Stofan D, Ciufo R, DiMarco A

机构信息

Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.

出版信息

J Appl Physiol (1985). 1995 Jul;79(1):340-7. doi: 10.1152/jappl.1995.79.1.340.

Abstract

Recent work has shown that loaded breathing produces alterations in diaphragmatic glutathione metabolism. Moreover, it has been suggested that alterations in glutathione levels may be related to the development of respiratory muscle fatigue and respiratory failure during loading. The purpose of this study was to determine whether it was possible to augment diaphragmatic stores of reduced glutathione (GSH) and thereby delay the development of respiratory failure during loaded breathing by administering N-acetylcysteine (NAC), a glutathione precursor. We compared the effects of massive inspiratory loading on saline- and NAC-treated groups of decerebrate unanesthetized rats with loading continuing until respiratory arrest occurred. As controls, we also studied unloaded saline- and NAC-treated animals. After arrest, diaphragms were excised, measurement was made of diaphragmatic GSH and oxidized glutathione (GSSG) concentrations, and assessment was made of in vitro diaphragmatic contractility (i.e., the force-frequency relationship and in vitro fatigability). We found that loading of saline-treated animals produced reductions in the diaphragmatic force-frequency curve, reductions in GSH, and increases in GSSG levels. NAC administration blunted loading-induced decreases in diaphragmatic GSH levels and reduced the in vitro fatigability of excised diaphragm muscle strips. NAC did not significantly alter the time to respiratory arrest, however, and also failed to alter the effect of loaded breathing on the diaphragmatic force-frequency relationship. These findings suggest that free radical-mediated GSH depletion is not the limiting factor determining the development of respiratory failure in this model of loaded breathing.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验