Suppr超能文献

Sp1和VP16转录激活结构域的核心启动子特异性

Core promoter specificities of the Sp1 and VP16 transcriptional activation domains.

作者信息

Emami K H, Navarre W W, Smale S T

机构信息

Howard Hughes Medical Institute, University of California, Los Angeles, School of Medicine 90095-1662, USA.

出版信息

Mol Cell Biol. 1995 Nov;15(11):5906-16. doi: 10.1128/MCB.15.11.5906.

Abstract

The core promoter compositions of mammalian protein-coding genes are highly variable; some contain TATA boxes, some contain initiator (Inr) elements, and others contain both or neither of these basal elements. The underlying reason for this heterogeneity remains a mystery, as recent studies have suggested that TATA-containing and Inr-containing core promoters direct transcription initiation by similar mechanisms and respond similarly to a wide variety of upstream activators. To analyze in greater detail the influence of core promoter structure on transcriptional activation, we compared activation by GAL4-VP16 and Sp1 through synthetic core promoters containing a TATA box, an Inr, or both TATA and Inr. Striking differences were found between the two activators, most notably in the relative strengths of the TATA/Inr and Inr core promoters: the TATA/Inr promoter was much stronger than the Inr promoter when transcription was activated by GAL4-VP16, but the strengths of the two promoters were more comparable when transcription was activated by Sp1. To define the domains of Sp1 responsible for efficient activation through an Inr, several Sp1 deletion mutants were tested as GAL4 fusion proteins. The results reveal that the glutamine-rich activation domains, which previously were found to interact with Drosophila TAF110, preferentially stimulate Inr-containing core promoters. In contrast, efficient activation through TATA appears to require additional domains of Sp1. These results demonstrate that activation domains differ in their abilities to function with specific core promoters, suggesting that the core promoter structure found in a given gene may reflect a preference of the regulators of that gene. Furthermore, the core promoter preference of an activation domain may be related to a specific mechanism of action, which may provide a functional criterion for grouping activation domains into distinct classes.

摘要

哺乳动物蛋白质编码基因的核心启动子组成高度可变;一些含有TATA盒,一些含有起始子(Inr)元件,还有一些既含有这两种基本元件,也有既不含有这两种基本元件的。这种异质性的根本原因仍是个谜,因为最近的研究表明,含TATA和含Inr的核心启动子通过相似的机制指导转录起始,并且对多种上游激活因子的反应也相似。为了更详细地分析核心启动子结构对转录激活的影响,我们比较了GAL4-VP16和Sp1通过含有TATA盒、Inr或同时含有TATA和Inr的合成核心启动子的激活情况。发现这两种激活因子之间存在显著差异,最明显的是在TATA/Inr和Inr核心启动子的相对强度上:当由GAL4-VP16激活转录时,TATA/Inr启动子比Inr启动子强得多,但当由Sp1激活转录时,这两种启动子的强度更相近。为了确定Sp1中负责通过Inr进行有效激活的结构域,测试了几个Sp1缺失突变体作为GAL4融合蛋白。结果表明,富含谷氨酰胺的激活结构域,此前发现其与果蝇TAF110相互作用,优先刺激含Inr的核心启动子。相反,通过TATA进行有效激活似乎需要Sp1的其他结构域。这些结果表明,激活结构域在与特定核心启动子发挥功能的能力上存在差异,这表明给定基因中发现的核心启动子结构可能反映了该基因调节因子的偏好。此外,激活结构域对核心启动子的偏好可能与特定作用机制相关,这可能为将激活结构域分为不同类别提供一个功能标准。

相似文献

1
Core promoter specificities of the Sp1 and VP16 transcriptional activation domains.
Mol Cell Biol. 1995 Nov;15(11):5906-16. doi: 10.1128/MCB.15.11.5906.
2
Two leaky-late HSV-1 promoters differ significantly in structural architecture.
Virology. 2000 Jun 20;272(1):191-203. doi: 10.1006/viro.2000.0365.
7
Sp1 and AP2 regulate but do not constitute TATA-less human TAF(II)55 core promoter activity.
Nucleic Acids Res. 2002 Oct 1;30(19):4145-57. doi: 10.1093/nar/gkf537.
8
Characterization of sINR, a strict version of the Initiator core promoter element.
Nucleic Acids Res. 2009 Jul;37(13):4234-46. doi: 10.1093/nar/gkp315. Epub 2009 May 13.
10
Cooperation between core promoter elements influences transcriptional activity in vivo.
Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1955-9. doi: 10.1073/pnas.92.6.1955.

引用本文的文献

1
Requirements for mammalian promoters to decode transcription factor dynamics.
Nucleic Acids Res. 2023 May 22;51(9):4674-4690. doi: 10.1093/nar/gkad273.
3
Compatibility rules of human enhancer and promoter sequences.
Nature. 2022 Jul;607(7917):176-184. doi: 10.1038/s41586-022-04877-w. Epub 2022 May 20.
4
Genomic environments scale the activities of diverse core promoters.
Genome Res. 2022 Jan;32(1):85-96. doi: 10.1101/gr.276025.121. Epub 2021 Dec 27.
5
The RNA Polymerase II Core Promoter in .
Genetics. 2019 May;212(1):13-24. doi: 10.1534/genetics.119.302021.
6
ETS1 and SP1 drive DHX15 expression in acute lymphoblastic leukaemia.
J Cell Mol Med. 2018 May;22(5):2612-2621. doi: 10.1111/jcmm.13525. Epub 2018 Mar 7.
7
The punctilious RNA polymerase II core promoter.
Genes Dev. 2017 Jul 1;31(13):1289-1301. doi: 10.1101/gad.303149.117.
8
Engineered Promoters for Potent Transient Overexpression.
PLoS One. 2016 Feb 12;11(2):e0148918. doi: 10.1371/journal.pone.0148918. eCollection 2016.

本文引用的文献

2
Site-specific initiation of transcription by RNA polymerase II.
Proc Soc Exp Biol Med. 1993 Jun;203(2):127-39. doi: 10.3181/00379727-203-43583.
5
DNA topoisomerase I is involved in both repression and activation of transcription.
Nature. 1993 Sep 16;365(6443):227-32. doi: 10.1038/365227a0.
7
An alternative pathway for transcription initiation involving TFII-I.
Nature. 1993 Sep 23;365(6444):355-9. doi: 10.1038/365355a0.
9
TBP, a universal eukaryotic transcription factor?
Genes Dev. 1993 Jul;7(7B):1291-308. doi: 10.1101/gad.7.7b.1291.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验