Suppr超能文献

低分辨率结构的蛋白质对接

Protein docking for low-resolution structures.

作者信息

Vakser I A

机构信息

Center for Molecular Design, Washington University, St Louis, MO 63130, USA.

出版信息

Protein Eng. 1995 Apr;8(4):371-7. doi: 10.1093/protein/8.4.371.

Abstract

A typical problem for a docking procedure is how to match two molecules with known 3-D structure so as to predict the configuration of their complex. A very serious obstacle to docking is an inherent inaccuracy in the 3-D structures of the molecules. In general, existing molecular recognition techniques are not designed for cases where (i) conformational changes upon macromolecular complex formation are substantial or (ii) the X-ray data on one or both (macro) molecules are not available, and the structures, based on alternative sources (NMR, modeling), are not well defined. We designed a direct computer experiment using molecules totally deprived of any structural features smaller than 7 A. This was performed on the basis of a previously developed docking algorithm. The modified procedure was applied to a number of known protein complexes taken from the Brookhaven Protein Data Bank. In most cases, a pronounced trend towards the correct structure of the molecular complex was clearly indicated and the real binding sites were predicted. The distinction between the prediction of the antigen-antibody complex and other molecular pairs may reflect important differences in the principles of complex formation. The results strongly suggest the use of our recognition procedure for docking studies where the detailed structures of the molecules are lacking.

摘要

对接程序的一个典型问题是如何匹配两个具有已知三维结构的分子,以预测它们复合物的构型。对接的一个非常严重的障碍是分子三维结构中固有的不准确性。一般来说,现有的分子识别技术并非为以下情况设计:(i)大分子复合物形成时构象变化很大,或(ii)一个或两个(大)分子的X射线数据不可用,且基于其他来源(核磁共振、建模)的结构定义不明确。我们设计了一个直接的计算机实验,使用完全没有任何小于7埃结构特征的分子。这是基于先前开发的对接算法进行的。修改后的程序应用于从布鲁克海文蛋白质数据库获取的一些已知蛋白质复合物。在大多数情况下,明显显示出朝向分子复合物正确结构的显著趋势,并预测出了实际的结合位点。抗原-抗体复合物预测与其他分子对预测之间的差异可能反映了复合物形成原理的重要差异。结果强烈表明,在缺乏分子详细结构的对接研究中使用我们的识别程序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验