Suppr超能文献

Peroxynitrite causes DNA damage and oxidation of thiols in rat thymocytes [corrected].

作者信息

Salgo M G, Bermúdez E, Squadrito G L, Pryor W A

机构信息

Biodynamics Institute, Louisiana State University, Baton Rouge 70803-1800, USA.

出版信息

Arch Biochem Biophys. 1995 Oct 1;322(2):500-5. doi: 10.1006/abbi.1995.1493.

Abstract

We report here the ability of peroxynitrite to cause DNA strand breaks and to oxidize cellular thiol groups in viable rat thymocytes. Peroxynitrite was added to rat thymocytes in a phosphate buffer and DNA damage was measured by the fluorescence analysis of DNA unwinding assay. Peroxynitrite causes DNA strand breaks in a dose-dependent fashion. Four hydroxyl radical scavengers, namely mannitol, dimethyl sulfoxide, sodium benzoate, and Trolox, were tested for their ability to protect DNA from oxidative damage by peroxynitrite. Mannitol failed to protect DNA at concentrations at which it would have conferred nearly complete protection from damage by the hydroxyl radical. Strikingly, dimethyl sulfoxide and benzoate, which are more efficient hydroxyl radical scavengers than mannitol, caused an increase in DNA damage. Trolox was the only scavenger, among the four tested here, that was able to protect DNA from oxidative damage by peroxynitrite. We have previously shown that, among the scavengers tested, Trolox is the most effective scavenger of HOONO*, where HOONO* is a reactive form of HOONO that is a more selective oxidant than is the hydroxyl radical (see W. A. Pryor, X. Jin, and G. L. Squadrito, 1994, Proc. Natl. Acad. Sci. USA 91, 11173-11177). Thus, these results are consistent with our earlier observations that oxidations by peroxynitrite involve a reactive intermediate, HOONO*, rather than hydroxyl radicals. Peroxynitrite also oxidized cellular thiols in a dose-dependent fashion. Greater than 90% of the cells exposed to peroxynitrite were still viable for up to 10 min after DNA damage and thiol oxidation had occurred. In conclusion, DNA damage caused by peroxynitrite can be rationalized as caused by a powerful oxidant, HOONO*, which is formed during the decomposition of peroxynitrite to nitrite.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验