Suppr超能文献

利用径向基函数网络从残基序列预测对折叠蛋白质构象稳定性的自由能贡献。

Predicting free energy contributions to the conformational stability of folded proteins from the residue sequence with radial basis function networks.

作者信息

Casadio R, Compiani M, Fariselli P, Vivarelli F

机构信息

Dept. of Biology, University of Bologna, Italy.

出版信息

Proc Int Conf Intell Syst Mol Biol. 1995;3:81-8.

PMID:7584470
Abstract

Radial basis function neural networks are trained on a data base comprising 38 globular proteins of well resolved crystallographic structure and the corresponding free energy contributions to the overall protein stability (as computed partially from chrystallographic analysis and partially with multiple regression from experimental thermodynamic data by Ponnuswamy and Gromiha (1994)). Starting from the residue sequence and using as input code the percentage of each residue and the total residue number of the protein, it is found with a cross-validation method that neural networks can optimally predict the free energy contributions due to hydrogen bonds, hydrophobic interactions and the unfolded state. Terms due to electrostatic and disulfide bonding free energies are poorly predicted. This is so also when other input codes, including the percentage of secondary structure type of the protein and/or residue-pair information are used. Furthermore, trained on the computed and/or experimental delta G values of the data base, neural networks predict a conformational stability ranging from about 10 to 20 kcal mol-1 rather independently of the residue sequence, with an average error per protein of about 9 kcal mol-1.

摘要

径向基函数神经网络是在一个数据库上进行训练的,该数据库包含38种具有良好解析晶体结构的球状蛋白质以及对整体蛋白质稳定性的相应自由能贡献(部分通过晶体学分析计算得出,部分通过Ponnuswamy和Gromiha(1994年)从实验热力学数据进行多元回归计算得出)。从残基序列开始,并将每种残基的百分比和蛋白质的总残基数用作输入编码,通过交叉验证方法发现,神经网络可以最佳地预测氢键、疏水相互作用和未折叠状态所导致的自由能贡献。静电和二硫键自由能所导致的项预测效果较差。当使用其他输入编码时,包括蛋白质二级结构类型的百分比和/或残基对信息,情况也是如此。此外,在数据库的计算和/或实验ΔG值上进行训练后,神经网络预测的构象稳定性范围约为10至20千卡/摩尔,相当独立于残基序列,每个蛋白质的平均误差约为9千卡/摩尔。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验