Suppr超能文献

流行病学中的多状态模型。

Multi-state models in epidemiology.

作者信息

Commenges D

机构信息

Université de Bordeaux 2, France.

出版信息

Lifetime Data Anal. 1999 Dec;5(4):315-27. doi: 10.1023/a:1009636125294.

Abstract

I first discuss the main assumptions which can be made for multi-state models: the time-homogeneity and semi-Markov assumptions, the problem of choice of the time scale, the assumption of homogeneity of the population and also assumptions about the way the observations are incomplete, leading to truncation and censoring. The influence of covariates and different durations and time-dependent variables are synthesized using explanatory processes, and a general additive model for transition intensities presented. Different inference approaches, including penalized likelihood, are considered. Finally three examples of application in epidemiology are presented and some references to other works are given.

摘要

我首先讨论多状态模型可以做出的主要假设

时间齐次性和半马尔可夫假设、时间尺度的选择问题、总体同质性假设以及关于观测值不完整方式的假设,这些不完整会导致截断和删失。协变量、不同持续时间和时间依存变量的影响通过解释过程进行综合,并给出了一个用于转移强度的一般加法模型。考虑了不同的推断方法,包括惩罚似然法。最后给出了三个在流行病学中的应用实例,并给出了一些其他相关工作的参考文献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验