Suppr超能文献

Electric field-directed growth and branching of cultured frog nerves: effects of aminoglycosides and polycations.

作者信息

Erskine L, Stewart R, McCaig C D

机构信息

Department of Biomedical Sciences, Marischal College, University of Aberdeen, Scotland.

出版信息

J Neurobiol. 1995 Apr;26(4):523-36. doi: 10.1002/neu.480260406.

Abstract

The direction and rate of earliest nerve growth are critical determinants of neuronal architecture. One extrinsic cue that influences these parameters is a small direct current electric field, although the underlying mechanisms are unclear. We have studied the orientation, rate of growth, and branching behavior of embryonic Xenopus spinal neurites exposed to aminoglycoside antibiotics, to raised external cations, to applied direct current electric fields, and to combinations of these treatments. Field-induced cathodal turning and cathodal branching of neurites were blocked by the aminoglycosides, by raised extracellular calcium ([Ca2+]0) and by raised extracellular magnesium ([Mg2+]0). Neomycin together with high external Ca2+, by contrast, induced a reversal in the polarity of turning and branching, with neurites reorienting and branching more frequently anodally. Aminoglycosides decreased neurite growth rates, and for neomycin this was partially reversed by high external Ca2+. Raised [Ca2+]0 alone but not raised [Mg2+]0 altered growth rates in a field-strength dependent manner. Modulation of membrane surface charge may underlie altered galvanotropic orientation and branching. Such an effect is insufficient to explain the changes in growth rates, which may result from additional perturbations to Ca2+ influx and inositol phospholipid metabolism.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验