Dou Y, Admiraal S J, Ikeda-Saito M, Krzywda S, Wilkinson A J, Li T, Olson J S, Prince R C, Pickering I J, George G N
Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA.
J Biol Chem. 1995 Jul 7;270(27):15993-6001. doi: 10.1074/jbc.270.27.15993.
Pig and human myoglobin have been engineered to reverse the positions of the distal histidine and valine (i.e. His64(E7)-->Val and Val68(E11)-->His). Spectroscopic and ligand binding properties have been measured for human and pig H64V/V68H myoglobin, and the structure of the pig H64V/V68H double mutant has been determined to 2.07-A resolution by x-ray crystallography. The crystal structure shows that the N epsilon of His68 is located 2.3 A away from the heme iron, resulting in the formation of a hexacoordinate species. The imidazole plane of His68 is tilted relative to the heme normal; moreover it is not parallel to that of His93, in agreement with our previous proposal (Qin, J., La Mar, G. N., Dou, Y., Admiraal, S. J., and Ikeda-Saito, M. (1994) J. Biol. Chem. 269, 1083-1090). At cryogenic temperatures, the heme iron is in a low spin state, which exhibits a highly anisotropic EPR spectrum (g1 = 3.34, g2 = 2.0, and g3 < 1), quite different from that of the imidazole complex of metmyoglobin. The mean iron-nitrogen distance is 2.01 A for the low spin ferric state as determined by x-ray spectroscopy. The ferrous form of H64V/V68H myoglobin shows an optical spectrum that is similar to that of b-type cytochromes and consistent with the hexacoordinate bisimidazole hemin structure determined by the x-ray crystallography. The double mutation lowers the ferric/ferrous couple midpoint potential from +54 mV of the wild-type protein to -128 mV. Ferrous H64V/V68H myoglobin binds CO and NO to form stable complexes, but its reaction with O2 results in a rapid autooxidation to the ferric species. All of these results demonstrate that the three-dimensional positions of His64 and Val68 in the wild-type myoglobin are as important as the chemical nature of the side chains in facilitating reversible O2 binding and inhibiting autooxidation.
猪和人肌红蛋白已被改造,使远端组氨酸和缬氨酸的位置发生互换(即His64(E7)→Val和Val68(E11)→His)。已对人和猪的H64V/V68H肌红蛋白的光谱和配体结合特性进行了测量,并通过X射线晶体学确定了猪H64V/V68H双突变体的结构,分辨率为2.07埃。晶体结构表明,His68的Nε位于距血红素铁2.3埃处,形成了六配位物种。His68的咪唑平面相对于血红素法线倾斜;此外,它与His93的咪唑平面不平行,这与我们之前的提议一致(Qin, J., La Mar, G. N., Dou, Y., Admiraal, S. J., and Ikeda-Saito, M. (1994) J. Biol. Chem. 269, 1083 - 1090)。在低温下,血红素铁处于低自旋状态,表现出高度各向异性的EPR光谱(g1 = 3.34,g2 = 2.0,g3 < 1),与高铁肌红蛋白的咪唑配合物的光谱有很大不同。通过X射线光谱法测定,低自旋三价铁状态下的平均铁 -氮距离为2.01埃。H64V/V68H肌红蛋白的亚铁形式显示出与b型细胞色素相似的光谱,并且与通过X射线晶体学确定的六配位双咪唑血红素结构一致。双突变将三价铁/亚铁偶联中点电位从野生型蛋白的 +54 mV降低到 -128 mV。亚铁H64V/V68H肌红蛋白与CO和NO结合形成稳定的复合物,但其与O2的反应会迅速自动氧化为三价铁物种。所有这些结果表明,野生型肌红蛋白中His64和Val68的三维位置在促进可逆O2结合和抑制自动氧化方面与侧链的化学性质同样重要。