Glen R C, Payne A W
Department of Physical Sciences, Wellcome Research Laboratories, Beckenham, Kent, U.K.
J Comput Aided Mol Des. 1995 Apr;9(2):181-202. doi: 10.1007/BF00124408.
A genetic algorithm has been designed which generates molecular structures within constraints. The constraints may be any useful function, for example an enzyme active site, a pharmacophore or molecular properties from pattern recognition or rule-induction analyses. The starting point may be random or may utilise known molecules. These are modified to 'grow' into families of structures which, using the evolutionary operators of selection, crossover and mutation evolve to better fit the constraints. The basis of the algorithm is described together with some applications in lead generation, 3D database construction and drug design. Genetic algorithms of this type may have wider applications in chemistry, for example in the design and optimisation of new polymers, materials (e.g. superconducting materials) or synthetic enzymes.
已设计出一种遗传算法,该算法可在约束条件下生成分子结构。这些约束条件可以是任何有用的函数,例如酶活性位点、药效团或来自模式识别或规则归纳分析的分子特性。起始点可以是随机的,也可以利用已知分子。对这些分子进行修改,使其“生长”成结构家族,这些结构家族利用选择、交叉和突变等进化算子进行进化,以更好地符合约束条件。文中描述了该算法的基础以及在先导化合物生成、三维数据库构建和药物设计中的一些应用。这种类型的遗传算法在化学领域可能有更广泛的应用,例如在新型聚合物、材料(如超导材料)或合成酶的设计和优化中。