Suppr超能文献

切应力可诱导血管内皮细胞释放不依赖三磷酸腺苷(ATP)的瞬时一氧化氮,这是通过卟啉微传感器直接测量得出的。

Shear stress induces ATP-independent transient nitric oxide release from vascular endothelial cells, measured directly with a porphyrinic microsensor.

作者信息

Kanai A J, Strauss H C, Truskey G A, Crews A L, Grunfeld S, Malinski T

机构信息

Department of Pharmacology, Duke University Medical Center, Durham, NC, USA.

出版信息

Circ Res. 1995 Aug;77(2):284-93. doi: 10.1161/01.res.77.2.284.

Abstract

Shear stress causes the vascular endothelium to release nitric oxide (NO), which is an important regulator of vascular tone. However, direct measurement of NO release after the imposition of laminar flow has not been previously accomplished because of chemical (oxidative degradation) and physical (diffusion, convection, and washout) complications. Consequently, the mechanism, time course, kinetics, and Ca2+ dependence of NO release due to shear stress remain incompletely understood. In this study, we characterized these parameters by using fura 2 fluorescence and a polymeric porphyrin/Nafion-coated carbon fiber microsensor (detection limit, 5 nmol/L; response time, 1 millisecond) to directly measure changes in [Ca2+]i and NO release due to shear stress or agonist (ATP or brominated Ca2+ ionophore [Br-A23187]) from bovine aortic endothelial cells. The cells were grown to confluence on glass coverslips, loaded with fura 2-AM, and mounted in a parallel-plate flow chamber (volume, 25 microL). The microsensor was positioned approximately 100 microns above the cells with its long axis parallel to the direction of flow. Laminar flow of perfusate was maintained from 0.04 to 1.90 mL/min, which produced shear stresses of 0.2 to 10 dyne/cm2. Shear stress caused transient NO release 3 to 5 seconds after the initiation of flow and 1 to 3 seconds after the rise in [Ca2+]i, which reached a plateau after 35 to 70 seconds. Although the amount (peak rate) of NO release increased as a function of the shear stress (0.08 to 3.80 pmol/s), because of the concomitant increase in the flow rate, the peak NO concentration (133 +/- 9 nmol/L) remained constant. Maintenance of flow resulted in additional transient NO release, with peak-to-peak intervals of 15.5 +/- 2.5 minutes. During this 13- to 18-minute period, when the cells were unresponsive to shear stress, exogenous ATP (10 mumol/L) or Br-A23187 (10 mumol/L) evoked NO release. Prior incubation of the cells with exogenous NO or the removal and EGTA (100 mumol/L) chelation of extracellular Ca2+ blocked shear stress but not ATP-dependent NO release. The kinetics of shear stress-induced NO release (2.23 +/- 0.07 nmol/L per second) closely resembled the kinetics of Ca2+ flux but differed markedly from the kinetics of ATP-induced NO release (5.64 +/- 0.32 nmol/L per second). These data argue that shear stress causes a Ca(2+)-mediated ATP-independent transient release of NO, where the peak rate of release but not the peak concentration depends on the level of shear stress.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

剪切应力促使血管内皮释放一氧化氮(NO),而NO是血管张力的重要调节因子。然而,由于化学(氧化降解)和物理(扩散、对流及冲洗)方面的复杂性,以往尚未实现对施加层流后NO释放的直接测量。因此,因剪切应力导致的NO释放的机制、时间进程、动力学及Ca²⁺依赖性仍未完全明了。在本研究中,我们通过使用fura 2荧光及一种聚合物卟啉/磺化氟离子交换膜包覆的碳纤维微传感器(检测限为5 nmol/L;响应时间为1毫秒)来直接测量[Ca²⁺]i的变化以及牛主动脉内皮细胞因剪切应力或激动剂(ATP或溴化Ca²⁺离子载体[Br - A23187])引起的NO释放,从而对这些参数进行了表征。细胞在玻璃盖玻片上生长至汇合,用fura 2 - AM加载,然后安装在平行板流动腔(体积为25 μL)中。微传感器置于细胞上方约100微米处,其长轴与流动方向平行。灌注液的层流维持在0.04至1.90 mL/分钟,产生的剪切应力为0.2至10达因/平方厘米。剪切应力在流动开始后3至5秒以及[Ca²⁺]i升高后1至3秒引起短暂的NO释放,35至70秒后达到平台期。尽管NO释放量(峰值速率)随剪切应力增加(0.08至3.80 pmol/秒),但由于流速同时增加,NO峰值浓度(133±9 nmol/L)保持恒定。维持流动导致额外的短暂NO释放,峰峰间隔为15.5±2.5分钟。在这个13至18分钟的时间段内,当细胞对剪切应力无反应时,则会因外源性ATP(10 μmol/L)或Br - A23187(10 μmol/L)诱发NO释放。用外源性NO预先孵育细胞或去除并螯合细胞外Ca²⁺(100 μmol/L)可阻断剪切应力,但不能阻断ATP依赖性NO释放。剪切应力诱导的NO释放动力学(2.23±0.07 nmol/L每秒)与Ca²⁺通量动力学非常相似,但与ATP诱导的NO释放动力学(5.64±0.32 nmol/L每秒)明显不同。这些数据表明,剪切应力导致Ca²⁺介导的不依赖ATP的NO短暂释放,其中释放的峰值速率而非峰值浓度取决于剪切应力水平。(摘要截短于400字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验