Bammler T K, Driessen H, Finnstrom N, Wolf C R
Molecular Pharmacology Unit, Ninewells Hospital and Medical School, Dundee, Scotland.
Biochemistry. 1995 Jul 18;34(28):9000-8. doi: 10.1021/bi00028a008.
The glutathione S-transferases play a pivotal role in the detoxification of toxic and carcinogenic electrophiles. We have previously reported the isolation of two actively transcribed murine pi-class glutathione S-transferase genes. In this study the two proteins encoded by these genes, Gst p-1 and Gst p-2, were expressed in Escherichia coli and found to exhibit profoundly different catalytic activities, the activity of Gst p-2 toward a panel of electrophilic substrates being 1-3 orders of magnitude lower than that of Gst p-1. In order to establish the basis for the difference between these highly homologous proteins, mutants were generated where specific amino acids had been exchanged. Kinetic analysis of the wild-type and mutant enzymes revealed that the amino acid differences occurring at positions 10 (Val/Ser), 11 (Arg/Pro), and 104 (Val/Gly) are responsible for the reduced enzymatic activity of Gst p-2. This analysis together with computer graphics modeling for Gst p-2 indicated that these changes affected both substrate and glutathione binding to the enzyme.