Liu L F, Liaw Y C, Tam M F
Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China.
Biochem J. 1997 Oct 15;327 ( Pt 2)(Pt 2):593-600. doi: 10.1042/bj3270593.
Escherichia coli-expressed chicken-liver glutathione S-transferase, cGSTA1-1, displays high ethacrynic acid (EA)-conjugating activity. Molecular modelling of cGSTA1-1 with EA in the substrate binding site reveals that the side chain of Phe-111 protrudes into the substrate binding site and possibly interacts with EA. Replacement of Phe-111 with alanine resulted in an enzyme (F111A mutant) with a 4.5-fold increase in EA-conjugating activity (9.2 mmol/min per mg), and an incremental Gibbs free energy (DeltaDeltaG) of 4.0 kJ/mol lower than that of the wild-type cGSTA1-1. Two other amino acid residues that possibly interact with EA are Ser-208 and Lys-15. Substitution of Ser-208 with methionine generated a cGSTA1-1(F111AS208M) double mutant that has low EA-conjugating activity (2.0 mmol/min per mg) and an incremental Gibbs free energy of +3.9 kJ/mol greater than the cGSTA1-1(F111A) single mutant. The cGSTA1-1(F111A) mutant, with an additional Lys-15-to-leucine substitution, lost 90% of the EA-conjugating activity (0.55 mmol/min per mg). The Km values of the cGSTA1-1(F111A) and cGSTA1-1(F111AK15L) mutants for EA are nearly identical. The wild-type cGSTA2-2 isoenzyme has a low EA-conjugating activity (0.56 mmol/min per mg). The kcat of this reaction can be increased 2. 5-fold by substituting Arg-15 and Glu-104 with lysine and glycine respectively. The KmEA of the cGSTA2-2(R15KE104G) double mutant is nearly identical with that of the wild-type enzyme. Another double mutant, cGSTA2-2(E104GL208S), has a KmEA that is 3.3-fold lower and a kcat that is 1.8-fold higher than that of the wild-type enzyme. These results, taken together, illustrate the interactions of Lys-15 and Ser-208 on cGSTA1-1 with EA.
大肠杆菌表达的鸡肝谷胱甘肽S-转移酶cGSTA1-1具有较高的依他尼酸(EA)结合活性。对cGSTA1-1与位于底物结合位点的EA进行分子模拟显示,苯丙氨酸-111的侧链伸入底物结合位点并可能与EA相互作用。将苯丙氨酸-111替换为丙氨酸后产生了一种酶(F111A突变体),其EA结合活性增加了4.5倍(9.2 mmol/分钟·毫克),且其增量吉布斯自由能(ΔΔG)比野生型cGSTA1-1低4.0 kJ/mol。另外两个可能与EA相互作用的氨基酸残基是丝氨酸-208和赖氨酸-15。将丝氨酸-208替换为甲硫氨酸产生了cGSTA1-1(F111AS208M)双突变体,其EA结合活性较低(2.0 mmol/分钟·毫克),且其增量吉布斯自由能比cGSTA1-1(F111A)单突变体高3.9 kJ/mol。cGSTA1-1(F111A)突变体,再额外将赖氨酸-15替换为亮氨酸后,失去了90%的EA结合活性(0.55 mmol/分钟·毫克)。cGSTA1-1(F111A)和cGSTA1-1(F111AK15L)突变体对EA的Km值几乎相同。野生型cGSTA2-2同工酶的EA结合活性较低(0.56 mmol/分钟·毫克)。分别将精氨酸-15和谷氨酸-104替换为赖氨酸和甘氨酸可使该反应的kcat增加2.5倍。cGSTA2-2(R15KE104G)双突变体的KmEA与野生型酶几乎相同。另一个双突变体cGSTA2-2(E104GL208S)的KmEA比野生型酶低3.3倍,kcat比野生型酶高1.8倍。综合这些结果,阐明了cGSTA1-1上的赖氨酸-15和丝氨酸-208与EA的相互作用。