Zastawny T H, Altman S A, Randers-Eichhorn L, Madurawe R, Lumpkin J A, Dizdaroglu M, Rao G
Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA.
Free Radic Biol Med. 1995 Jun;18(6):1013-22. doi: 10.1016/0891-5849(94)00241-b.
We investigated DNA base damage in mammalian cells exposed to exogenous iron ions in culture. Murine hybridoma cells were treated with Fe(II) ions at concentrations of 10 microM, 100 microM, and 1 mM. Chromatin was isolated from treated and control cells and analyzed by gas chromatography/mass spectrometry for DNA base damage. Ten modified DNA bases were identified in both Fe(II)-treated and control cells. The quantification of modified bases was achieved by isotope-dilution mass spectrometry. In Fe(II)-treated cells, the amounts of modified bases were increased significantly above the background levels found in control cells. Dimethyl sulfoxide at concentrations up to 1 M in the culture medium did not significantly inhibit the formation of modified DNA bases. A mathematical simulation used to evaluate the plausibility of DNA damage upon Fe(II) treatment predicted a dose-dependent response, which agreed with the experimental results. In addition, Fe(II) treatment of cells increased the cell membrane permeability and caused production of lipid peroxides. The nature of DNA base lesions suggests the involvement of the hydroxyl radical in their formation. The failure of dimethyl sulfoxide to inhibit their formation indicates a site-specific mechanism for DNA damage with involvement of DNA-bound metal ions. Fe(II) treatment of cells may increase the intracellular iron ion concentration and/or cause oxidative stress releasing metal ions from their storage sites with subsequent binding to DNA. Identified DNA base lesions may be promutagenic and play a role in pathologic processes associated with iron ions.