Suppr超能文献

Long-range fragmentation of the eukaryotic genome by exogenous and endogenous nucleases proceeds in a specific fashion via preferential DNA cleavage at matrix attachment sites.

作者信息

Gromova I I, Nielsen O F, Razin S V

机构信息

Department of Molecular Biology, University of Aarhus, Denmark.

出版信息

J Biol Chem. 1995 Aug 4;270(31):18685-90. doi: 10.1074/jbc.270.31.18685.

Abstract

Small cell lung cancer cells (OC-NYH-VM) were permeabilized and treated with different nucleases. The long-range distribution of DNA cleavage sites in the amplified c-myc gene locus was then analyzed by pulsed field gel electrophoretic separation of the released 50-kilobase to 1-megabase DNA fragments followed by indirect end labeling. Exogenous DNase I and nucleases specific for the single-stranded DNA were found to generate similar nonrandom patterns of large DNA fragments. The cleavage sites were located close to or even colocalized with matrix attachment regions, which were mapped independently using a recently developed procedure for DNA loop excision by DNA topoisomerase II-mediated DNA cleavage. Endogenous acidic nuclease with the properties of DNase II also digested DNA preferentially in proximity to the matrix attachment regions, generating characteristic patterns of excised DNA loops and their oligomers. A similar, although less specific, pattern of DNA fragmentation was observed after incubation of permeabilized cells under conditions favoring the activity of endogenous neutral Ca(2+)- and Mg(2+)-dependent nucleases. These findings are discussed in the context of the current model of the spatial domain organization of eukaryotic genome.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验