Paul A L, Ferl R J
Program in Plant Molecular and Cellular Biology, Department of Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA.
Plant Cell. 1998 Aug;10(8):1349-59. doi: 10.1105/tpc.10.8.1349.
We are investigating the nature of plant genome domain organization by using DNase I- and topoisomerase II-mediated cleavage to produce domains reflecting higher order chromatin structures. Limited digestion of nuclei with DNase I results in the conversion of the >800 kb genomic DNA to an accumulation of fragments that represents a collection of individual domains of the genome created by preferential cleavage at super-hypersensitive regions. The median size of these fragments is approximately 45 kb in maize and approximately 25 kb in Arabidopsis. Hybridization analyses with specific gene probes revealed that individual genes occupy discrete domains within the distribution created by DNase I. The maize alcohol dehydrogenase Adh1 gene occupies a domain of 90 kb, and the maize general regulatory factor GRF1 gene occupies a domain of 100 kb in length. Arabidopsis Adh was found within two distinct domains of 8.3 and 6.1 kb, whereas an Arabidopsis GRF gene occupies a single domain of 27 kb. The domains created by topoisomerase II-mediated cleavage are identical in size to those created by DNase I. These results imply that the genome is not packaged by means of a random gathering of the genome into domains of indiscriminate length but rather that the genome is gathered into specific domains and that a gene consistently occupies a discrete physical section of the genome. Our proposed model is that these large organizational domains represent the fundamental structural loop domains created by attachment of chromatin to the nuclear matrix at loop basements. These loop domains may be distinct from the domains created by the matrix attachment regions that typically flank smaller, often functionally distinct sections of the genome.
我们正在通过使用DNA酶I和拓扑异构酶II介导的切割来研究植物基因组结构域组织的性质,以产生反映高阶染色质结构的结构域。用DNA酶I对细胞核进行有限消化会导致>800 kb的基因组DNA转化为片段积累,这些片段代表了通过在超敏感区域优先切割而产生的基因组单个结构域的集合。这些片段的中位大小在玉米中约为45 kb,在拟南芥中约为25 kb。用特定基因探针进行的杂交分析表明,单个基因在DNA酶I产生的分布中占据离散的结构域。玉米乙醇脱氢酶Adh1基因占据一个90 kb的结构域,玉米通用调节因子GRF1基因占据一个长度为100 kb的结构域。拟南芥Adh基因位于两个分别为8.3 kb和6.1 kb的不同结构域中,而拟南芥GRF基因占据一个27 kb的单个结构域。由拓扑异构酶II介导的切割产生的结构域在大小上与由DNA酶I产生的结构域相同。这些结果表明,基因组不是通过将基因组随机聚集到长度不一的结构域中进行包装的,而是基因组被聚集到特定的结构域中,并且一个基因始终占据基因组的一个离散物理区段。我们提出的模型是,这些大的组织结构域代表了通过染色质在环基部附着于核基质而形成的基本结构环结构域。这些环结构域可能与由基质附着区域形成的结构域不同,基质附着区域通常位于基因组较小的、通常功能不同的区段两侧。