Idris A H, Wenzel V, Becker L B, Banner M J, Orban D J
Department of Surgery (Division of Emergency Medicine), University of Florida College of Medicine, Gainesville 32610-0390, USA.
Chest. 1995 Aug;108(2):522-8. doi: 10.1378/chest.108.2.522.
In a previous cardiopulmonary resuscitation (CPR) study in swine, ventilation was associated with improved rate of return of spontaneous circulation (ROSC) compared with nonventilated animals, which had greater hypoxia and hypercarbic acidosis. We used the same model to determine the independent effect of hypoxia and hypercarbic acidosis on ROSC after cardiac arrest.
Laboratory model of cardiac arrest.
University teaching hospital laboratory.
Domestic swine (23 to 61 kg).
Twenty-four swine were randomly assigned to three groups receiving ventilation during CPR with 85% O2/15% N2 (control), 95% O2/5% CO2 (hypercarbia), or 10% O2/90% N2 (hypoxia). All animals had ventricular fibrillation for 6 min without CPR, then CPR with one of the ventilation gases for 10 min, then defibrillation. Animals without ROSC received epinephrine, 85% O2, CPR for another 3 min, and defibrillation.
During the tenth minute of CPR, the hypercarbic group had more mean (SD) arterial hypercarbia than the control group (PCO2, 47 +/- 6, compared with 34 +/- 6; p < 0.01), and greater mixed venous hypercarbia (PCO2, 72 +/- 14, compared with 59 +/- 8; p < 0.05), while mean arterial and mixed venous PO2 was not significantly different. The hypoxic group had significantly less mean arterial (43 +/- 9 compared with 228 +/- 103 mm Hg) and mixed venous (22 +/- 5 compared with 35 +/- 7 mm Hg) PO2 when compared with the control group (p < 0.01), while mean arterial and mixed venous PCO2 were not significantly different. Thus, the model succeeded in producing isolated hypercarbia without hypoxia in the hypercarbic group and isolated hypoxia without hypercarbia in the hypoxic group. The rate of ROSC was 6/8 (75%) for the control group, 1/8 (13%) for the hypercarbic group, and 1/8 (13%) for the hypoxic group (p < 0.02).
Both hypoxia and hypercarbia independently had an adverse effect on resuscitation from cardiac arrest. In this model with a prolonged interval of untreated cardiac arrest, adequate ventilation was important for resuscitation.
在之前一项针对猪的心肺复苏(CPR)研究中,与未通气的动物相比,通气与自主循环恢复(ROSC)率的提高相关,未通气的动物存在更严重的缺氧和高碳酸血症性酸中毒。我们使用相同的模型来确定缺氧和高碳酸血症性酸中毒对心脏骤停后ROSC的独立影响。
心脏骤停的实验室模型。
大学教学医院实验室。
家猪(23至61千克)。
将24只猪随机分为三组,在心肺复苏期间分别接受85%氧气/15%氮气通气(对照组)、95%氧气/5%二氧化碳通气(高碳酸血症组)或10%氧气/90%氮气通气(缺氧组)。所有动物在未进行心肺复苏的情况下发生心室颤动6分钟,然后用其中一种通气气体进行10分钟的心肺复苏,随后进行除颤。未实现ROSC的动物接受肾上腺素、85%氧气,再进行3分钟的心肺复苏,然后再次除颤。
在心肺复苏的第10分钟,高碳酸血症组的平均(标准差)动脉血二氧化碳分压高于对照组(分别为47±6与34±6;p<0.01),混合静脉血二氧化碳分压也更高(分别为72±14与59±8;p<0.05),而平均动脉血氧分压和混合静脉血氧分压无显著差异。与对照组相比,缺氧组的平均动脉血氧分压(分别为43±9与228±103毫米汞柱)和混合静脉血氧分压(分别为22±5与35±7毫米汞柱)显著降低(p<0.01),而平均动脉血二氧化碳分压和混合静脉血二氧化碳分压无显著差异。因此,该模型成功地在高碳酸血症组产生了单纯的高碳酸血症而无缺氧,在缺氧组产生了单纯的缺氧而无高碳酸血症。对照组的ROSC率为6/8(75%),高碳酸血症组为1/8(13%),缺氧组为1/8(13%)(p<0.02)。
缺氧和高碳酸血症均独立地对心脏骤停复苏产生不利影响。在这个心脏骤停未治疗间隔时间较长的模型中,充分通气对复苏很重要。